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1 Models

1. “Economists have chosen to abstract from the complexities of the real world and develop

rather simple models that capture the essentials, just as a road map is helpful even

though it does not record every house or every store.” in Walter Nicholson’s textbook

2. “The author of a fable draws a parallel to a situation in real life. He has some moral

he wishes to impart to the reader. The fable is an imaginary situation that is some-

where between fantasy and reality. Any fable can be dismissed as being unrealistic or

simplistic, but this is also the fable’s advantage. Being something between fantasy and

reality, a fable is free of extraneous details and annoying diversions. In this unencum-

bered state, we can clearly discern what cannot always be seen in the real world. On

our return to reality, we are in possession of some sound advice or a relevant argument

that can be used in the real world.” in Rubinstein (2006 EMA)

3. “For some applications, a photograph may be the best means of depicting an object,

but in some cases a drawing or even a caricature may allow greater understanding.

Furthermore, a commercial artist who is attempting to provide an accurate impression

of some object may utilize all three media, either sequentially or simultaneously. It is

the same with the three techniques of economic modeling.” Gibbard and Varian (1978)

4. “There cannot be a language more universal and more simple, more free from errors

and obscurities, that is to say more worthy to express the invariable relations of natural

things than mathematics.” by Joseph Fourier, Analytical Theory of Heat, 1822

Remark 1. “All models are wrong but some are useful” (generally attributed to George Box).

Models are abstractions, and they are intended to be abstractions of a much more complex

reality, in order to be useful. For instance, you may not want to label Walnut street in a

world map; a map of Philadelphia will not include the Pacific Ocean, even though it covers

about one-third of Earth’s total surface area. Modeling is the (unambiguous) language of

economists that allows us to focus on one of the underlying mechanisms. Gilboa, Postlewaite,

Samuelson and Schmeidler (2014) view models as case-based reasoning and hence one role

of theory is to enrich the set of cases.
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2 Walrasian Equilibrium

Definition 1. A Walrasian equilibrium (W.E.) for an exchange economy E =
((
uh, eh

)
h∈H

)
is a combination of prices and allocation

(
p,
(
ch
)
h∈H

)
∈ RL × RHL

+ such that

1. Given prices p, each agent h solves maxc∈RL
+
uh (c) s.t. p · c ≤ p · eh

2. Markets clear:
∑

h∈H
(
ch − eh

)
= 0

Remark 2. Equilibrium is of central importance in economics. This course first concerns

Walrasian equilibrium (WE) in a pure exchange economy, and it is straightforward to be

generalized to include firms (in a few lectures). Arrow and Debreu formalized Walras’ model

and hence it is often referred to as Arrow-Debreu equilibrium (ADE), or competitive equi-

librium (CE). Later on, we will introduce “Debreu prices” to define ADE under uncertainty.

We will also define Arrow security market equilibrium and establish the equivalence result.

It will then be generalized to general equilibrium with incomplete markets (GEI). Macro

courses often start from ADE and much stuff is (nontrivial) applications of general equi-

librium theory; in addition, one will see recursive competitive equilibrium (RCE) to take

advantage of dynamic programming tools. Game theory even talks about more equilibrium

concepts: Nash equilibrium (NE), subgame perfect equilibrium (SPE), trembling hand per-

fect equilibrium (THP), Bayes-Nash equilibrium (BNE), weak perfect Bayesian equilibrium

(WPBE), almost perfect Bayesian equilibrium (APBE), sequential equilibrium (SE), Markov

Perfect Equilibria (MPE), etc.

So what is an equilibrium? An equilibrium concept is a mapping from environments

(preferences, endowments, technology, information, etc.) to what will happen (allocations,

prices, strategies, etc.) An equilibrium concept usually consists of optimality conditions

plus some notion of consistency (sometimes with additional restrictions to make things more

reasonable (and/or tractable), e.g. belief based refinements). For instance, in Definition 1,

(1) is the optimality condition, and (2) captures a notion of consistency: prices are right in

the sense that (mysteriously) markets should clear. As another example, Nash equilibrium

requires: (1) each player is optimizing given beliefs about others’ behavior; (2) these beliefs

are correct in the sense that (mysteriously) beliefs are consistent with others’ actual behavior.

Remark 3. The elements of a WE are allocations AND prices. Prices are the balance wheel

of the market mechanism – prices serve as signals of relative supply and demand to buyers

and sellers. The role of prices is to clear the markets. One big assumption of WE is that

agents take prices as given. Later on we will see the game theoretic foundations of WE

(Shapley and Shubik, 1977), where the NE outcome is that when agents are small relative

to a market, their supply and demand will have a small impact on market price.

2



Remark 4. Although the definition for WE does not rule out negative prices, we could get

rid of negative prices by assuming utility functions to be increasing (A2). Suppose the price

for some good is negative, then there is always a way to buy more of every good and hence

keep increasing your utility, without violating the budget constraint. Then there will be no

well-defined solution to household optimization. But it is possible to have zero prices.

Remark 5. (A2) implies Walras’ law, which in turn implies that one market clearing condition

is redundant. That is, if we have market clearing in L− 1 markets, then market clearing in

the L-th market is spontaneously satisfied, which is guaranteed by Walras’ law.

3 Pareto Optimal

Definition 2. A feasible allocation (i.e., nonnegative consumption that satises the resource

constraint)
(
xh
)
h∈H is said to be a Pareto improvement for (or Pareto dominate)

(
ch
)
h∈H if

1. uh
(
xh
)
≥ uh

(
ch
)
,∀h ∈ H

2. uh
′ (
xh

′)
> uh

′ (
ch

′)
,∃h′ ∈ H

Definition 3. Given an economy E, a feasible allocation
(
ch
)
h∈H is Pareto optimal (or

Pareto efficient) if there is no other feasible allocation that Pareto dominates
(
ch
)
h∈H.

Remark 6. Pareto optimality is achieved if there is no way to make one agent strictly better

off without making someone else worse off. It has nothing to do with fairness in any sense.

We could also define weak Pareto optimality if there is no other feasible allocation that makes

everyone strictly better off. Pareto optimality implies weak Pareto optimality. If we assume

utilities are increasing and continuous, then WPO also implies PO, i.e., they are equivalent:

suppose
(
ch
)
h∈H is WPO but not PO, then ∃

(
xh
)
h∈H s.t. uh

(
xh
)
≥ uh

(
ch
)
,∀h ∈ H and

uh
′ (
xh

′)
> uh

′ (
ch

′)
,∃h′ ∈ H. By continuity, we can take a little bit amount ε� 0 off from

xh
′

but still leave him with uh
′ (
xh

′ − ε
)
> uh

′ (
ch

′)
, and redistribute ε evenly among others,

then everyone is strictly better off uh
(
xh + 1

H−1ε
)
> uh

(
xh
)
≥ uh

(
ch
)
, contradicting WPO.

Example 1. In an exchange economy, two agents have utility functions ui (xi1, x
i
2) = min (xi1, x

i
2)

and endowments e1 = (2, 0) and e2 = (0, 1).The Pareto set is1
{
x ∈ R4

+ | x2 = (2, 1)− x1, xi1 ≥ xi2
}
.

In the Edgeworth box, it is the area between the two 45 degree lines emanating from the

agents’ origins. In a competitive market, the equilibrium price is p = (0, 1), and agent 2 gets

all of good 2 and at least as much of good 1; the equilibrium utilities are (u1, u2) = (0, 1).

1To be rigorous, one needs to prove it is indeed the Pareto set: for every allocation in it, making one
strictly better off must worsen off someone else; for every allocation not in it, there is a Pareto improvement.
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Now suppose that through some misfortune, 3/4 of agent 1’s endowment is destroyed before

trading occurs, leaving him with only ê1 =
(
1
2
, 0
)
. The new equilibrium price is p = (1, 0),

and agent 1 gets all of good 1 and at least as much of good 2; the new equilibrium utilities

are (u1, u2) =
(
1
2
, 0
)
. Agent 1 is made better off by a destruction of his endowment! In fact,

one can show that if each agent is allowed to destroy a portion of his endowment before

the competitive market opens, then the unique NE is such that they both destroy all their

endowment.

Theorem 1. Social Planner Characterization for Pareto Efficiency

If
(
xh
)
h∈H solves the planner’s problem for some vector of Pareto weights λ� 0

(
xh
)
h∈H ∈ arg max

(ch)
h∈H
≥0

∑
h

λhuh
(
ch
)

s.t.
∑
h

ch ≤
∑
h

eh

then
(
xh
)
h∈H is Pareto efficient. Conversely, under weak assumption2, any Pareto efficient

allocation is a solution to the social planner problem for some weight vector λ > 0.

Remark 7. This theorem immediately gives the first order condition characterizations of

Pareto efficiency. If x is an interior Pareto optimal allocation, and all the utility functions

have strictly positive partial derivatives at x, then social planner characterization implies that

all agents have the same MRS at x. To see, define Lagrangian function L =
∑

h λ
huh

(
ch
)

+∑
i µi
(∑

h e
h
i −

∑
h c

h
i

)
. Interior FOC gives ∀h,∀i,

∂L

∂chi
= λh

∂uh
(
ch
)

∂chi
− µi = 0

Therefore, MRShi,j =
∂uh(ch)/∂chi
∂uh(ch)/∂chj

= µi
µj

=
∂uh

′(
ch

′)
/∂ch

′
i

∂uh′(ch′)/∂ch′j
= MRSh

′
i,j,∀h, h′,∀i, j. Note that the

requirement of being interior is important here: the two origins of an Edgeworth box are

indeed on the contract curve, but MRS need not be equalized at the origin.

The converse of is not true: equal MRS does not gurantee Pareto efficiency (draw a

counterexample with nonconvex preferences in an Edgeworth box). If in addition to MRS

being equal at x, all agents have convex preferences, then x is Pareto efficient.

4 First Welfare Theorem

Theorem 2. First Welfare Theorem.

2The assumption is if the utility possibility set is convex. See MWG Proposition 16.E.2.
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Let
(
p,
(
ch
)
h∈H

)
be a WE for the economy E. If (A2)3, then

(
ch
)
h∈H is PO.

Proof. By contradiction. Suppose
(
ch
)
h∈H is not Pareto optimal: ∃

(
xh
)
h∈H feasible such

that uh
(
xh
)
≥ uh

(
ch
)
, ∀h ∈ H and uh

′ (
xh

′)
> uh

′ (
ch

′)
,∃h′ ∈ H.

Claim 1. p · xh′ > p · ch′ . (p · xh′ ≤ p · ch′ contradicts to ch
′

being the optimal choice by h′.)

Claim 2. p · xh ≥ p · ch, ∀h. (If uh
(
xh
)
> uh

(
ch
)
, by Claim 1 we have p · xh > p · ch.

If uh
(
xh
)

= uh
(
ch
)
, suppose p · xh < p · ch, then by (A2) ∃x′ s.t. p · x′ ≤ p · ch but

uh (x′) > uh
(
ch
)
.)

The above two claims imply
∑H

h=1 p ·xh >
∑H

h=1 p · ch. This implies ∃l s.t.
∑H

h=1 pl ·xhl >∑H
h=1 pl · chl . Since prices are nonnegative,

∑H
h=1 x

h
l >

∑H
h=1 c

h
l =

∑H
h=1 e

h
l violates feasibility.

Remark 8. A simple but very sloppy “proof” (which is not really a proof but an exposition of

the relation between WE and PO): If
(
ch
)
h∈H is an interior WE allocation, and if uh ∈ C1,∀h,

then individual optimality implies MRShxy = px
py

. Since prices are the same for everyone, then

MRS are equalized among households MRShxy = MRSh
′

xy,∀h, h′ ∈ H, which is consistent with

PO. (See Remark 7)

Remark 9. One application of FWT and Theorem 1 is Negishi’s (1960) method which simplies

computing Walrasian equilibria. The main idea is to first compute Pareto optimal allocations

by solving social planner’s problem, giving all potential equilibrium allocations according to

FWT. Then isolate the ones that are indeed Walrasian equilibrium allocations, by picking

the right Pareto weights that make the transfer functions to be 0.

Example 2. Two consumers have utility functions ui (xi1, x
i
2) = ln (xi1) + ln (xi2) and endow-

ments ω1 = (3, 1) , ω2 = (1, 1). The government is considering two policies:

A. Tax/transfer, then trade: The government requires consumer 1 to transfer 1 unit of

good 1 to consumer 2. Then consumers trade according to the competitive equilibrium.

B. Trade, then tax/transfer: Consumers trade according to the competitive equilibrium.

Then the government requires consumer 1 to transfer 1 unit of good 1 to consumer 2.

The first welfare theorem tells us that policy A is Pareto optimal. Generically, an ar-

bitrary reallocation of WE (policy B) will not be Pareto optimal. What is more, in this

setting, simple calculation gives that Policy A actually Pareto dominates Policy B: the final

allocation is ((2, 1) , (2, 1)) under policy A, and is
((

3
2
, 5
4

)
,
(
5
2
, 3
4

))
under policy B.

Remark 10. The First Welfare Theorem suggests that the market is an efficient organization,

which formalizes Adam Smith’s invisible hand. But also pay attention to the (both explicit

3We will frequently refer to the following assumptions: For all agents h ∈ H, (A1) eh � 0; (A2) utility is
increasing: ∀x, y ∈ RL

+, uh (x) > uh (y) whenever x� y; (A3) uh (·) is continuous; (A4) uh (·) is concave.
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and implicit) assumptions we have. For example, when agents do not take prices as given

due to market power (i.e., some consumers are acting like monopolists); or if we do not have

a complete market (e.g. externality), Pareto efficiency may be violated. We will talk about

more circumstances about market failures (asymmetric information, public goods, etc.) at

the end of this course. Here are some examples showing failures of the first welfare theorem.

Example 3. OLG. Suppose the endowments are e01 = 0,
(
ett, e

t
t+1

)
= (1, 0) ,∀t ≥ 1. Utility

function of generation t is ut
(
ctt, c

t
t+1

)
= ctt + ctt+1. Autarky is WE but not Pareto optimal.

The allocation x01 = 1
2
,
(
ett, e

t
t+1

)
=
(

1
2t
, 1− 1

2t+1

)
,∀t ≥ 1 is feasible and and Pareto dominates

autarky allocation. It looks like a Ponzi scheme but since we assume the economy lasts forever

and there are infinite many generations, it is indeed feasible.

Why FWT fails in this example? Note that in our environment, we have assumed |H| = H

and |L| = L, i.e., finite households and finite commodities. In fact, FWT can be generalized

to infinite dimensional commodity space. However, in the OLG model, we have both an

infinite number of periods (hence infinite number of commodities) as well as an infinite

number of agents. This double infinity is crucial for the failure of the first welfare theorem:

the infinite sum that appears in the proof may be ill-defined. Double infinity is the major

source of the theoretical peculiarities of OLG models (e.g. Karl Shell, 1971, JPE).

Example 4. Missing Market. Suppose there are two agents with strictly increasing

utility4 and two commodities, but they cannot trade commodity 2 (i.e., missing market for

good 2). Typically Walrasian equilibria are not Pareto efficient here (since the Walrasian

equilibrium will be the endowment).

Example 5. Externality. Suppose two households have utility functions u1 (x) = ln (x11 + x21)+

ln (x12) and u2 (x) = lnx21+lnx22. There is externality in the sense that 2’s consumption enters

1’s utility. The set of Pareto optimal allocations is

PO =
{
x ∈ R4

+ | x11 = 0, x21 = e1, x
1
2 + x22 = e2

}
Suppose the endowment is e1 = (1, 2) and e2 = (2, 1). The Walrasian equilibrium is (a

calculation exercise) p2
p1

= 8
5

and x1 =
(
6
5
, 15

8

)
, x2 =

(
9
5
, 9
8

)
, which is not in PO. (Be careful

that it is a big mistake to substitute market clearing conditions into the individual’s problem

before maximization.) Externality can also be viewed as a “missing market” in the sense that

the bystander neither pays nor gets compensated for what affects her utility.

4 A nice property of utility function is that it guarantees the equilibrium price p� 0 (if equilibrium exists).
Then we do not need to discuss zero prices, and can normalize one price to be 1. In fact, if someone’s utility
function is strictly in consumption in good i, then pi must be positive; otherwise he will demand infinite
amount of good i.
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Recitation 2: Second Welfare Theorem
Xincheng Qiu (qiux@sas.upenn.edu)

1 Second Welfare Theorem

Theorem 1. (Second Welfare Theorem) An economy E satisfies (A1)-(A4). If is
(
eh
)
h∈H �

0 is Pareto-efficient, then ∃p ∈ RL
+ such that

(
p,
(
eh
)
h∈H

)
is a Walrasian Equilibrium for E.

Remark 1. The First Welfare Theorem says that (under the assumptions) Walrasian Equilib-

rium allocations are Pareto Efficient. The Second Welfare Theorem gives the converse: every

Pareto Efficient allocation can be obtained as a Walrasian Equilibrium allocation if we allow

for a redistribution of endowment (and the above statement proves it by finding a particular

way of reallocation). Pareto efficiency is a weak result as it does not say anything about a

“just” distribution: an economy where the wealthy hold the vast majority of resources could

still be Pareto efficient but might not be desirable. (But this weakness does not mean that

we will give up the idea of Pareto efficiency; instead, it should be viewed as the minimal

requirement that we will pursue.) Though FWT says markets are good in that WE are PE,

it is silent about the desirability from a distributional perspective. SWT complements FWT

in the sense that it gives conditions under which any desired efficient allocation could be

decentralized through competitive markets, as long as reallocation is possible. (However,

bear in mind that in reality SWT seldom works due to the government’s inability to enact

the lump-sum transfer.)

Proof. The idea of the proof is the following (for more details please see the notes). First

we construct a preferred set Kh =
{
z ∈ RL : eh + z ≥ 0 and uh

(
eh + z

)
> uh

(
eh
)}

for every

agent. Let K =
∑

hK
h. By the concavity of utility functions, K is convex. Since

(
eh
)
h∈H

is Pareto efficient, 0 /∈ K. Therefore by separating hyperplane theorem, there exists p 6= 0

such that p · z ≥ p · 0 = 0, ∀z ∈ cl (K). We can proceed to show under this p, no trade is an

equilibrium.

Theorem 2. (Separating Hyperplane Theorem) Suppose that B ⊂ RL is convex and x /∈
int (B). Then ∃p ∈ RL, p 6= 0 such that p · y ≥ p · x,∀y ∈ B.

Example 1. Foley (1967) proposed a notion of “fairness” where no one covets another’s

allocation. Formally, an allocation
{
xh
}
h∈H is no-envy if uh

(
xh
)
≥ uh

(
xh′
)
,∀h, h′ (akin
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Figure 1: Nonconvexity

(a) SWF Fails with Nonconvexity

Given an economy E. Assume utility functions are continuous, concave and increasing,

eh � 0 is Pareto-efficient. Then there exists a price p ∈ RL
+ such that (p, (eh)h∈H) is a

Walrasian equilibrium for E.

The idea of the proof is the following. First we construct a preferred set Kh = {z ∈
RL : eh + z ≥ 0 and uh(eh + z) > uh(eh)}. for every agent. Let K =

∑
hK

h. By the

concavity of utility functions, K is convex. Since (eh)h is Pareto efficient, 0 /∈ IntK.

Therefore by separating hyperplane theorem, there exists p 6= 0 such that pz ≥ p0 = 0.

We can proceed to show under this p, no trade is an equilibrium. Hence (p, (eh)h) is a

Walrasian equilibrium.

(c) For the theorem you identified in (b), the conclusion will not necessarily hold if the

economy is such that the assumptions of the separating hyperplane theorem are not

satisfied. Give an example of an economy for which the conclusions of the general

equilibrium theorem fails, and describe how it fails.

Figure 1: SWF fails with nonconvexity

See Figure 1. Suppose the two indifference curves are tangent at e. The allocation e

is Pareto efficient. However it can not be an equilibrium allocation because given the

price vector, agent 1 is not optimizing.

(d) In (c) you were asked to describe an economy for which the conclusion of the general

equilibrium theorem failed. Given an example of an economy for which the conclusion

of the general equilibrium theorem in (b) HOLDS, but for which the assumptions of the

separating hyperplane theorem do NOT hold.

3

(b) SWF Holds with Nonconvexity
Figure 2: SWF holds with nonconvexity

4

to incentive compatibility). If one pursues an outcome that is both Pareto-efficient and no-

envy, it can be achieved through a market mechanism by an egalitarian reallocation. Let

êh = 1
H

∑H
i=1 e

i,∀h. By FWT, the equilibrium allocation
{
x̂h
}
h∈H under this reallocation

(as long as it exists) is Pareto-efficient. To see that
{
x̂h
}
h∈H is also no-envy, notice that

Walras’ law implies p · x̂h = p · x̂h′ = p ·
∑

i e
i

H
,∀h, h′. By the revealed preference argument,

uh
(
x̂h
)
≥ uh

(
x̂h′
)
,∀h, h′.

Example 2. Figure 1a gives an example where assumptions of SWT are not satisfied and

the conclusion of SWT fails. Suppose the two indifference curves are tangent at e. The

allocation e is Pareto efficient. However it can not be an equilibrium allocation because

given the price vector, agent 1 is not optimizing.

Example 3. Figure 1b gives an example where assumptions of SWT are not satisfied but

the conclusion of SWT holds. If at every point on the contract curve, the two indifference

curves are tangent as in the figure, then the conclusion of the second welfare theorem holds

even if the preference is not convex. Notice it is not enough if only one Pareto efficient

allocation is supported as an equilibrium because second welfare theorem says all Pareto

efficient allocations can be supported as equilibria.

Remark 2. If the existence of WE is already established, then SWT is immediate. Start

with an economy where the endowments
(
eh
)
h∈H are Pareto-efficient and suppose

(
ch
)
h∈H is

an equilibrium allocation. People trade to
(
ch
)
h∈H only if u

(
ch
)
≥ u

(
eh
)
,∀h. If there is a

strict inequality, then Pareto efficiency of
(
eh
)
h∈H is violated. So there is no strict inequality,

which implies
(
eh
)
h∈H must be an equilibrium allocation. However, as we will see below, the

proof of existence invokes the fixed point theorem (which is harder), while the above proof

for SWT only uses the separating hyperplane theorem (which is easier).
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2 Existence

Theorem 3. (Existence) A Walrasian equilibrium exists for a pure exchange economy if

each agent has (A1) positive endowments, utility functions being (A2’) strictly increasing,

(A3) continuous, (A4’) strictly concave.

Example 4. Conditions in the above theorem are sufficient but not necessary. Consider two

agents with Leontief preferences ui (xi
1, x

i
2) = min {xi

1, x
i
2} and endowments e1 = (1, 0) , e2 =

(0, 1). There exist multiple WE where prices (p1, p2) can range all from (1, 0) to (0, 1). Even

if the utility functions are ui (xi
1, x

i
2) = max {xi

1, x
i
2} which is not convex, two WE exist: one

is p = (1, 1) and x = ((1, 0) , (0, 1)), the other is p = (1, 1) and x = ((0, 1) , (1, 0)).

Remark 3. Note that (A4’) + (A2) ⇒ (A2’). If you are really ambitious, a more general

existence theorem can be found in Chapter 5.3 in Bewley. There we invoke the Kakutani

fixed point theorem, which generalizes the Brouwer’s theorem to correspondences.

Definition 1. Aggregate excess demand is defined as z (p) =
∑

h

(
fh
(
p, eh

)
− eh

)
, where

fh is the individual demand function.

Remark 4. Some things to note:

• As seen in 701A, demand functions are homogeneous of degree 0 and thus we can

normalize the prices. It seems attractive is to normalize one good to be numeraire

(p1 = 1), but this requires p1 positive before normalization. To get rid of this problem,

we could instead normalize p ∈ ∆L−1.

• Again in 701A we have seen that (A2) implies Walras’ law: p · fh
(
p, eh

)
= p · eh and

hence p · z (p) = 0,∀p (not only at equilibrium prices).

• p∗ is an equilibrium price if and only if z (p∗) = 0.

Theorem 4. (Brouwer’s fixed point theorem) Given a compact convex set A ⊂ Rn and a

continuous function f : A→ A, there exists x ∈ A such that f (x) = x.

Remark 5. Examples of f : A→ A with some assumption violated, and f has no fixed point:

1. (If A is not closed) A = (0, 1), and f (x) = x2.

2. (If A is not bounded) A = [0,+∞), and f (x) = x + 1.

3. (If A is not convex) A = {x ∈ R2 : ‖x‖ = 1}, and f (x) = −x.

4. (If f is not continuous) A = [0, 1], and f (x) = 1 {x ≤ 0.5}.
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Theorem 5. Suppose the aggregate excess demand function z : ∆L−1 → RL is continuous,

satisfies Walras’ law and is homogeneous of degree 0. Then there exist a p∗ such that z (p∗) ≤
0 and zl (p∗) = 0 if p∗l > 0.

Proof. The idea is to construct a function g : ∆L−1 → ∆L−1 by

g (p̄) = arg max
p∈∆L−1

(
pz (p̄)− ‖p− p̄‖2)

Then we can argue that g has a fixed point p∗ by verifying conditions in Brouwer’s theorem.

Lastly we can show p · z (p∗) ≤ 0,∀p ∈ ∆L−1 by contradiction, using pε = εp+ (1− ε) p∗.

Remark 6. How does this result relate to the existence of Walrasian equilibrium? First,

optimality conditions are already incorporated in demand functions. Second, notice that,

the result already gives the existence of a slightly different definition of “equilibrium”: for

p∗l > 0, we have exact market clearing zl (p∗) = 0; for p∗l = 0, we allow for demand to be

less than endowments, i.e, zl (p∗) ≤ 0. However, if we assume utility functions are strictly

increasing, then in order to get well-defined demand, prices have to be strictly positive. That

is, we can get rid of this problem and get back to exact market clearing z (p∗) = 0.

Example 5. (Boundary endowments) Consider an economy with 2 agents and 3 commodi-

ties. The endowments are e1 = (1, 1, 1), e2 = (0, 2, 0). Suppose u1 (x1, x2, x3) =
√
x1 + x3,

u2 (x1, x2, x3) = x1 + x2. Strict monotonicity implies the equilibrium prices must be positive

if an equilibrium exists. Then agent 1 will sell good 2 and has excess demand for good 1

and/or 3, but markets cannot clear since agent 2 has none of them.

Example 6. (Non Convexity) Endowments are e1 = (1, 0) , e2 = (0, 1). Utility functions

are u1 (x1, x2) = (x1)2 + (x2)2, u2 (x1, x2) = x1x2. At any strictly positive price vector,

agent 1’s optimal bundle is a boundary point while agent 2’s is interior. There cannot be

an equilibrium with a price of 0 for either good since both agents have strictly monotonic

preferences for both goods.

Example 7. Figure 1a also gives an example where assumptions of the existence theorem

are not satisfied and equilibrium does not exist. Figure 1b also gives an example where

assumptions of the existence theorem are not satisfied and but equilibrium exists. (Recall in

Remark 2 we talk about the relation of existence and SWT.)
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A More Results

We have some other interesting results but we will not pursue too much in this course:

1. Global uniqueness: Mitiushin and Polterovich provides nice sufficient conditions to

ensure uniqueness.

2. Tatonnement stability: After Scarf’s (1960) example with unique equilibrium where

the tatonnement process never converges, this idea became less popular. Rational expecta-

tion interpretation of WE: agents correctly anticipate the correct prices, then choose accord-

ing to these prices and then the prices turn out to be correct.

3. Sonnenschein, Mantel, Debreu (SMD): “Anything goes” with an excess demand func-

tion (as long as homogeneity and Walras’ law are satisfied). The implication is one can have

an arbitrary number of equilibria with arbitrary stability properties.

4. The equilibrium correspondence is upper-hemi continuous. Global restrictions on

equilibrium correspondence: not “anything goes” in general equilibrium theory (Brown and

Matzkin, 1996)

Figure 2: Impossibility of Equilibrium Correspondence

It’s that easy. �

Figure 7 shows how an equilibrium correspondence might look like. Note
that it will generally not be convex valued. Sometimes people call this the
‘equilibrium manifold’ - under suffi ciently many differentiability assumptions
on the utility functions, one can show that it is a ‘smooth manifold’.

7.1 The global structure of the correspondence

The theorems of Debreu, Mantel and Sonnenschein implied that the aggregate
excess demand function as a function from prices only has no structure. The
situation is quite different when one considers the equilibrium correspondence.
First there is certainly global structure on the equilibrium manifold. This

was first noted by D. Brown and R. Matzkin in ‘Testable Restrictions on the
Equilibrium Manifold’Econometrica 64, 1996. The following theorem is in their
paper.

Theorem 10 (Brown and Matzkin (1996)) There are prices and individ-
ual endowments (p, (eh)h∈H) and (q, (fh)h∈H) such that it is impossible that p
is an equilibrium price for the economy (uh, eh)h∈H and q is an equilibrium price
for the economy (uh, fh)h∈H.

Proof. Consider the 2 Edgeworth-boxes in Figure 8. By the weak axiom
of revealed preferences it is impossible that p and q are equilibrium prices and
that agent 1 has chosen within the Edgeworth boxes, given these prices and
endowments. �

Figure 8

28

1

2

2

x

y

Notes : Cyclical consistency is violated for agent 1, for example, y �1 f �1 x �1 e �1 y.
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Recitation 3: Production
Xincheng Qiu (qiux@sas.upenn.edu)

1 Production Economy

We now generalize the Walrasian model of a pure exchange economy to include production:

K firms with production sets Y k ⊂ RL,and share δhk owned household h. A production

economy is therefore denoted by E =
((
uh, eh,

(
δhk
)
k∈K

)
h∈H

,
(
Y k
)
k∈K

)
.

Definition 1. WE for a production economy E is defined as
(
p,
(
ch
)
h∈H ,

(
yk
)
k∈K

)
s.t.

1. Given prices, households optimize: ch ∈ arg maxc∈RL
+
uh (c) s.t. p ·c ≤ p ·eh+p ·

∑
k δ

h
ky

k

2. Given prices, firms maximize profits: yk ∈ arg maxy∈Y k p · y

3. Markets clear:
∑

h c
h =

∑
h e

h +
∑

k y
k

It is straightforward to extend the first welfare theorem, the second welfare theorem, and

existence obtained in a pure exchange economy to a production economy.

Example 1. Consider a two person economy in which each person has an endowment of

2 units of l. Agent 1 owns the production function for good x, which is x = 2
√
l, and

agent 2 owns the production function for good y, which is y = 2
√
l. Agents utility functions

are: u1 (l, x, y) = l + x + y, u2 (l, x, y) = lx2y3. A first observation is that the equilibrium

prices must be strictly positive, since u1 is strictly increasing in each argument. We can thus

normalize pl = 1. Firm 1’s profit maximization gives lx = p2x, x = 2px and πx = p2x. The

solution for firm 2 is similar, by replacing subscripts with y.

Let’s try an interior equilibrium. Then it must be pl = px = py = 1 due to agent 1’s utility

function. Therefore, the wealth for two agents are m1 = 2+πx = 3 and m2 = 2+πy = 3. The

Cobb-Douglas form then immediately gives agent 2’s demand: (l2, x2, y2) =
(
1
6
, 1
3
, 1
2

)
× 3 =

(0.5, 1, 1.5). Then by market clearing (l1, x1, y1) = (1.5, 1, 0.5), which is indeed optimal for

agent 1 because they exhaust her wealth. So we find a WE.

Theorem 1. (First Welfare Theorem) Assume (A2). Any Walrasian Equilibrium allocation

for a production economy is Pareto efficient.1

1The passage in The Wealth of Nations deserves to be repeated here: “As every individual, therefore,
endeavours as much as he can both to employ his capital in the support of domestic industry, and so to
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Proof. The proof is by contradiction. If
((
ch
)
h∈H ,

(
yk
)
k∈K

)
is a Walrasian Equilibrium but

not Pareto efficient, then there exists a feasible allocation
((
ĉh
)
h∈H ,

(
ŷk
)
k∈K

)
that Pareto

dominates it. By the same argument as before, p · ĉh′ > p · ch′ for some h′ and p · ĉh ≥ p · ch

for any h, and hence
∑

h p · ĉh >
∑

h p · ch. This is equivalent to p ·
∑

h ĉ
h > p ·

∑
h c

h. (1)

Firms’ profit maximization implies p · yk ≥ p · ŷk,∀k, so
∑

k p · yk ≥
∑

k p · ŷk. This is

equivalent to p ·
∑

k y
k ≥ p ·

∑
k ŷ

k. (2)

(1) and (2) together imply p ·
(∑

h ĉ
h −

∑
k ŷ

k
)
> p ·

(∑
h c

h −
∑

k y
k
)

= p ·
∑

h e
h. The

last equality comes from market clearing condition. Since equilibrium prices are nonnegative

under (A2), this means ∃l s.t.
∑

h ĉ
h
l −

∑
k ŷ

k
l >

∑
h e

h
l , which violates feasibility.

Remark 1. Assuming differentiability, interior Pareto efficient allocations and production

plans for a production economy with a production function y = f (x) can be characterized

by MRSh = MRSh
′
= MRT .

For the second welfare theorem, the key idea is: the price vector is nothing but a hyper-

plane that separates the aggregate post-production set from the aggregate strictly preferred

set. We need another version of separating hyperplane theorem to separate two convex sets

(instead of separating a convex set and a point as we did before). Thus we also need convexity

of production sets.

Assumption. (A5) Y k is closed and convex.

Lemma 1. (Convex Separating Theorem) Let D,E ⊆ RL be disjoint, nonempty, convex.

� ∃H (p, a) such that p · d ≥ a ≥ p · e, ∀d ∈ D, ∀e ∈ E.

� If D is open, then ∃H (p, a) such that p · d > a ≥ p · e, ∀d ∈ D, ∀e ∈ E.

� If both are open, then ∃H (p, a) such that p · d > a > p · e, ∀d ∈ D, ∀e ∈ E.

Theorem 2. (Second Welfare Theorem) Assume (A2)-(A5). Every interior Pareto efficient

allocation can be decentralized in Walrasian equilibrium.

direct that industry that its produce may be of the greatest value; every individual necessarily labours to
render the annual revenue of the society as great as he can. He generally, indeed, neither intends to promote
the public interest, nor knows how much he is promoting it. By preferring the support of domestic to that
of foreign industry, he intends only his own security; and by directing that industry in such a manner as
its produce may be of the greatest value, he intends only his own gain, and he is in this, as in many other
cases, led by an invisible hand to promote an end which was no part of his intention. Nor is it always the
worse for the society that it was no part of it. By pursuing his own interest he frequently promotes that of
the society more effectually than when he really intends to promote it. I have never known much good done
by those who affected to trade for the public good. It is an affectation, indeed, not very common among
merchants, and very few words need be employed in dissuading them from it.”
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Proof. Consider an interior Pareto efficient allocation
((
ch
)
h∈H ,

(
yk
)
k∈K

)
with ch � 0. WTS

there is a distribution of the economy’s resources
((
eh,
(
δhk
)
k∈K

)
h∈H

)
and a price vector p

such that
(
p,
(
ch
)
h∈H ,

(
yk
)
k∈K

)
is a WE.

Define Kh =
{
z ∈ RL : uh (z) > uh

(
ch
)}

and K =
∑

hK
h (“aggregate strictly preferred

set”). Let W = e +
∑

k Y
k (“aggregate post-production set”), where e is the aggregate

endowment. Under the assumptions, K is open, K and W are convex. Moreover, they are

disjoint; otherwise Pareto efficiency is violated. By the convex separating theorem, there

exists p such that p · z > p · w, ∀z ∈ K, ∀w ∈ W .

We now verify that this price p indeed supports
((
ch
)
h∈H ,

(
yk
)
k∈K

)
as a WE. The in-

equality obtained above can be translated to that ∀
((
ĉh
)
h∈H ,

(
ŷk
)
k∈K

)
such that uh

(
ĉh
)
>

uh
(
ch
)
, ∀h and ŷk ∈ Y k,∀k, we have p ·

∑
h ĉ

h > p · e+ p ·
∑

k ŷ
k. Since

∑
h c

h = e+
∑

k y
k,

it can be written as

p ·
∑
h

(
ĉh − ch

)
> p ·

∑
k

(
ŷk − yk

)
First, take a sequence such that ĉh → ch,∀h, and ŷk = yk,∀k 6= j, then in the limit we

get p · (ŷj − yj) ≤ 0, which proves that yj maximizes profit given p. This is true for arbitrary

j ∈ K.

Second, take a sequence such that ŷk = yk,∀k, and ĉh → ch,∀h 6= i, then in the limit we

get ui (ĉi) > ui (ci) ⇒ p · (ĉi − ci) ≥ 0. This is true for arbitrary i ∈ H. Then we show it

can never be an exact equality. Suppose ui (ĉi) > ui (ci) and p · ĉi = p · ci, then by continuity

∃λ < 1 such that ui (λĉi) > ui (ci) and p · (λĉi) < p · ci, which is a contradiction. Therefore,

ui
(
ĉi
)
> ui

(
ci
)
⇒ p · ĉi > p · ci,∀i ∈ H

which means that for every i, ci maximizes household i’s utility under budget constraint.

Existence can be obtained in a production economy as well, mutatis mutandis. In partic-

ular, we need to have the supply correspondences in the aggregate excess demand. To invoke

the fixed point theorem, we want to ensure that supply correspondences are non-empty,

convex-valued and uhc in prices. Thus we need more assumption on production sets.

Assumption. (A6) 0 ∈ Y k (possibility of inaction); RL
−− ⊂ Y k (free disposability).

Assumption. (A7) Denote Y =
∑

k Y
k, then Y ∩ −Y = {0}.

Remark 2. (A7) assumes that production is irreversible. If y ∈ Y and y ∈ −Y , then =y ∈ Y ,

i.e., −y is also a possible production vector. y is the reverse of −y in the sense that the

outputs in y are the inputs in −y and vice versa.
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Theorem 3. (Existence) With (A5)-(A7) in addition, existence of Walrasian equilibrium

carries over to the case of a production economy.

Proof. For a complete treatment, please refer to Bewley, Section 4.8, which is in turn based

on Debreu (1959), Section 7 of Chapter 5. The idea of proof is the following. Now we modify

the aggregate excess demand to be z (p) =
∑

h

(
fh
(
p, eh

)
− eh

)
−
∑

k y
k (p), where yk (p) is

the supply correspondence for firm k. z (p) is homogeneous of degree 0 in p.

First, we can show that the set of feasible allocations is compact and nonempty (See

Bewley Theorem 3.54). One can thus place a limit on the amount of any commodity available

to any firm or consumer, and the resulting truncated production sets and budget sets are

compact. Therefore, the demand and supply defined over them are uhc, convex valued

and non-empty. Then we construct the same mapping for the existence proof for exchange

economies (but with the excess demand adding supply correspondence), and by the same

argument there will be a fixed point. Finally, verify that this fixed point is indeed an

equilibrium price vector for the production economy with no truncation.

We do not provide more examples about existence and non-existence, because it would

replicate Kim Border’s amazing notes on “(Non)-Existence of Walrasian Equilibrium.”

http://www.its.caltech.edu/∼kcborder/Notes/Walrasian.pdf

2 Linear Technology

A simple example of production technology is the “linear activity model”, which assumes

production set is the convex cone spanned by finitely many rays:

Y =

{
y ∈ RL : y =

M∑
m=1

γmam, for some γ ∈ RM
+

}

where am is some linear activity, and γm ≥ 0 is the amount of am that is used in production.

Remark 3. Do not confuse this formula with convex combination: there is NO requirement

that
∑M

m=1 γm = 1. We do require γ ≥ 0. The interpretation of γm is levels, not weights.

Remark 4. The linear technology Y defined above exhibits constant returns to scale (CRS):

y ∈ Y ⇒ λy ∈ Y, ∀λ ≥ 0. Some might have a feeling that CRS is too strong an assumption

and that in reality technologies are often decreasing return to scale: if you duplicate a factory

by doubling all the inputs, you will probably get less than twice the output. A compelling

reason is that managerial skill is the constraint. But this is saying that managerial skill, as

4
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an input, is fixed. This idea can be summarized as below: non-increasing returns to scale

technology can be thought of as a constant-returns-to-scale technology with some input fixed.

Formally, for any convex production set Y ⊂ RL with 0 ∈ Y , there is a constant-returns-

to-scale convex production set Y ′ ⊂ RL+1 such that Y =
{
y ∈ RL : (y,−1) ∈ Y ′

}
. To see,

let

Y ′ =
{
y′ ∈ RL+1 : y′ = α (y,−1) for some y ∈ Y, α ≥ 0

}
If Y is convex, so is Y ′. If y′ ∈ Y ′, so is λy′,∀λ ≥ 0, hence Y ′ is CRS. It is straightforward

that Y =
{
y ∈ RL : (y,−1) ∈ Y ′

}
. This provides a justification for linear technology models.

Remark 5. A profit maximizing production plan is well defined if and only if p · am ≤ 0,∀m.

If p ·am > 0 for some m, the firm will choose γm →∞ and make infinite profits. If p ·am < 0

for some m, the firm will not operate this activity, i.e., γm = 0. If p · am = 0 for some m, the

firm may or may not use this activity. But if the firm is using activity am, then it must be

that p ·am = 0 (zero profit conditions). This observation already tells a lot about equilibrium

prices. The levels could be pinned down by market clearing conditions in equilibrium.

Remark 6. Under linear technology, profits are always 0 in equilibrium, so firms do not play

a role at all, and it makes no difference who owns production. Actually this is true more

generally, even for strictly convex production sets. That is, W.E. with firms is equivalent to

a household production equilibrium.

Example 2. Consider a country with two tradeable commodities, plastic and oil, and a

third commodity, pollution, that is not priced or traded. There is a single firm with a CRS

technology Y = {(γ,−γ, γ) : γ ≥ 0}. There is a single consumer with endowment e2 = 1

and utility u (x1, x2, y3) = lnx1 + lnx2 − 3
2
y3.

Normalize p2 = 1 so oil is the numeraire. The linear technology implies zero profit,

and hence p1 = p2 = 1. Household’s optimal consumption is thus x1 = 1
2
, x2 = 1

2
. In the

Walrasian equilibrium, market clearing pins down that the firm converts 1
2

unit of oil into

plastic, and generates 1
2

unit of pollution.

This is not Pareto optimal, however, due to presence of externality (or “missing market”).

The Pareto efficient allocation solves: maxx1 lnx1 + ln (1− x1) − 3
2
x1, which gives x∗1 = 1

3
.

There is over-production under negative externality.

The government can decentralize the Pareto efficient allocation by choosing a suitable tax

τ on plastic and redistributing the proceeds to the consumer as a lump-sum transfer T . Under

this scheme, p1 = 1+τ and hence Household’s optimal consumption is x1 = 1+T
2(1+τ)

, x2 = 1+T
2

.

We can achieve Pareto efficiency if τ = 1.

Example 3. Consider a production economy with 2 agents and 4 commodities. Commodities

1 and 2 are consumption goods while commodities 3 and 4 are production inputs. Utility
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functions are ui (c1, c2, c3, c4) = ln c1 + ln c2,∀i = 1, 2. Endowments are e1 = (0, 0, 1, 0) , e2 =

(0, 0, 0, 2). Suppose there are 4 possible activities transforming inputs into commodities 1

and 2: a1 = (1, 0,−3, 0) , a2 = (0.1, 1,−1, 0) , a3 = (1, 0, 0,−4) , a4 = (0, 1, 0,−2). There is a

single firm whose production set is given by the convex cone of these activities.

1. First, utility function form gives p1, p2 > 0 in equilibrium. Normalize p1 = 1. House-

hold’s optimal bundle given prices is immediate: c1 =
(
p3
2
, p3
2p2

)
, c2 =

(
p4,

p4
p2

)
.

2. Second, either a1 or a2 must be used in equilibrium. Suppose neither of them is used. If

p3 > 0, agent 1 wants to sell good 3 and thus the market does not clear. If p3 = 0, then

using a1, a2 give positive profits. Similarly, either a3 or a4 must be used in equilibrium.

3. Third, a1 cannot be used in equilibrium. Suppose a1 is used, then p3 = 1
3
. Since no

activity can give strictly positive profits, we have: p2 ≤ 7
30
, p4 ≥ 1

4
. Thus p · a4 =

p2 − 2p4 < 0, so a4 will not be used. By the previous point, we know that a3 must be

used and hence p4 = 1
4
. Note a3 is the now only activity that takes good 4 as an input,

so market clearing implies γ3 = 1
2
. Thus the total supply of good 1 must be great than

or equal to 1
2
. The total demand of good 1 is, however, c11 + c21 = 1

6
+ 1

4
< 1

2
, so this

market cannot clear.

4. Next, a3 has to be used in equilibrium. Suppose a3 is not used, and we know that a1 is

not used, then a2 is the only activity that produces good 1; it is also the only activity

that takes good 3 as an input. Market clearing implies the total output of good 1 is

0.1. Note non-positive profits give p3 ≥ 1
3
, together with c11 = p3

2
, implies this market

cannot clear.

5. Finally, a4 must be used. So far, we have γ1 = 0, γ2 = 1, γ3 > 0. These in turn give

p3 ≥ 1
3
, p3 = p2 + 0.1, p4 = 0.25, p4 ≥ 1

2
p2. Note that c12 = p3

2p2
> 1

2
, c22 = p4

p2
≥ 1

2
, and

hence total demand for good 2 exceeds 1. But if a4 is not used, the total output for good

2 is 1, this market cannot clear. Then a4 must be used, and hence p2 = 0.5, p3 = 0.6.

Demands are c1 = (0.3, 0.6) , c2 = (0.25, 0.5). Market clearing condition for the two

consumption goods pin down γ3 = 0.45, γ4 = 0.1. We can verify that input markets

clear. We find a unique WE.
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1 Equilibrium Concepts

We now extend Walras model to incorporate time and uncertainty. The key idea is to

model the same physical commodities at different time and under different states as different

goods. To simplify notations, we look at the two period model with uncertainty and it is

straightforward to extend to multiple/infinite periods.

Assume at time t = 0 the economy is in state s = 0; at time t = 1 one state of nature

out of S possible states of nature realizes. A bundle is a state-contingent consumption plan,

x = (x (0) , x (1) , . . . , x (S)) ∈ RL(S+1)
+ . Accordingly, there are L (S + 1) prices and hence

L (S + 1) − 1 after normalization (say, normalize ρ1 (0) = 1); and a utility function should

be uh : RL(S+1)
+ → R. Some common assumptions on utility functions:

• additive separability: uh (x) = vh0 (x (0)) +
∑S

s=1 v
h
s (x (s))

• expected utility: uh (x) = vh0 (x (0)) +
∑S

s=1 π
h
s v

h (x (s)) · · · · · · · · · · · · · · · · · · (∗)

• time discounting: uh (x) = vh (x (0)) + β
∑S

s=1 π
h
s v

h (x (s))

An exchange economy is E =
(
uh, eh

)
h∈H, where eh =

(
eh (0) , eh (1) , . . . , eh (S)

)
∈ RL(S+1)

+ .

Definition 1. A Debreu-Walras equilibrium for E =
(
uh, eh

)
h∈H consists of Debreu prices

ρ ∈ ∆L(S+1)−1 and an allocation
(
xh
)
h∈H ∈ RHL(S+1)

+ such that

1. Households optimize: ∀h, xh ∈ arg maxx u
h (x) s.t. ρ · x ≤ ρ · eh.

2. Markets clear:
∑

h∈H
(
xh − eh

)
= 0.

Remark 1. It is mathematically the same problem (with appropriate assumptions) as before,

so welfare theorems and existence still hold.

Remark 2. The market structure is that trade takes place at period 0, before any uncertainty

has been realized; at later periods, deliveries of the consumption goods take place but there

is no re-trading. This is to sign a contract (with perfect enforcement) that decides deliv-

eries in each period/state, but all payments happened at the time the contract was signed.

This contract seems unrealistic, so Arrow reformulated the model by introducing financial

securities.
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Now assume that at each state s there are spot markets (i.e., immediate deliveries) for the

L commodities with prices p (s). There are S+1 spot markets; each could have normalization

on spot prices. Normalize p1 (s) = 1 so commodity 1 is the numeraire. An Arrow security

for state s costs αs units of the numeraire at period 0 and pays 1 unit of the numeraire at

state s and 0 at all other states.

Definition 2. An Arrow security markets equilibrium consists of prices p, α, an allocation(
xh
)
h∈H ∈ RHL(S+1)

+ and portfolios
(
θh
)
h∈H ∈ RHS such that

1. Households optimize: ∀h,

(
xh, θh

)
∈ arg max

x,θ
uh (x)

s.t. p(0) · x(0) + α · θ ≤ p(0) · eh(0)

p(s) · x(s) ≤ p(s) · eh(s) + θs s = 1, . . . , S (1)

2. Markets clear:
∑

h∈H
(
xh − eh

)
= 0,

∑
h∈H θ

h = 0.

Remark 3. Prices of Arrow securities must be strictly positive to preclude arbitrage; other-

wise, households will demand θhs → +∞ if αs ≤ 0. The demand of Arrow securities could

be either positive or negative: positive means buying and negative selling. Arrow securities

do not come from nowhere: any Arrow security you buy must come from someone else who

is selling it. Markets for Arrow securities clear in equilibrium. But since budget constraints

hold with equality in equilibrium, all commodities market clearing automatically implies

Arrow securities market clearing.

An important result is that the set of equilibria is the same with both market structures.

Theorem 1. Prices and allocations
(
p, α,

(
xh, θh

)
h∈H

)
constitute an Arrow security markets

equilibrium if and only if there exist Debreu prices ρ ∈ ∆
L(S+1)−1
+ such that

(
ρ,
(
xh
)
h∈H

)
constitute a Walrasian equilibrium.

Remark 4. The key is to find out the relation between prices under both markets structures.

For s = 1, . . . , S, multiply the budget constraint (1) in the spot market at each state s by

αs, then add them up.

p(0) · x(0) + α · θ +
S∑
s=1

αs (p(s) · x(s)) ≤ p(0) · eh(0) +
S∑
s=1

αs
(
p(s) · eh(s)

)
+

S∑
s=1

αsθs
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Note that the parts from Arrow security portfolios in both sides cancel out. Comparing it

with
∑S

s=0 ρ (s) · x (s) ≤
∑S

s=0 ρ (s) · eh (s) suggests

p(0) = ρ (0) ;αsp(s) = ρ (s) ,∀s = 1, . . . , S. (2)

Remark 5. Intuition for the last equation. In Arrow security markets, one can use αs units

of good 1 (numeraire) at period 0 to buy an Arrow security of state s and hence 1
pl(s)

units

of good l under state s. In a Debreu-Walras market, αs units of good 1 (we normalize

ρ1 (0) = 1) at period 0 could afford αs

ρl(s)
units of good l under state s. If the two market

structures are equivalent, one would expect the same trade, so

αs
ρl (s)

=
1

pl (s)
(3)

In particular, take l = 1 and since p1 (s) = 1, we have

αs = ρ1 (s) (4)

Remark 6. We can obtain the Arrow security market equilibrium directly from Debreu-

Walras equilibrium
(
ρ,
(
xh
)
h∈H

)
. First of all, the same allocations could be ASME by the

equivalence result. Next, Arrow security prices can be obtained by equation (4). Lastly,

pl (s) can be calculated from αs and ρl (s) using equation (3).

2 Implications

2.1 Risk Sharing

Consider the case of separable and expected utility (∗) and only one physical commodity.

FOCs for the Pareto problem give

πhs v
h′ (xh (s)

)
πhs′v

h′ (xh (s′))
=

πĥs v
ĥ′
(
xĥ (s)

)
πĥs′v

ĥ′
(
xĥ (s′)

) ∀h, ĥ,∀s, s′ (5)

When FWT holds, this is also true for a competitive equilibrium allocation. Assume Bernoulli

utility functions are strictly increasing and strictly concave. Denote the aggregate endowment

understate s by e (s) =
∑

h e
h (s).

Theorem 2. Suppose households agree on subjective probabilities: πhs = πĥs ,∀h, ĥ,∀s. If

e (s) > e (s′), then xh (s) > xh (s′) ,∀h.

3



Proof. If households agree on subjective probabilities, then equation (5) becomes

vh′
(
xh (s)

)
vh′ (xh (s′))

=
vĥ′
(
xĥ (s)

)
vĥ′
(
xĥ (s′)

) ∀h, ĥ,∀s, s′ (6)

Now let’s prove the result by contradiction. Suppose ∃ĥ such that xĥ (s) ≤ xĥ (s′). Since vĥ is

strictly increasing and strictly concave, we have vĥ′
(
xĥ (s)

)
/vĥ′

(
xĥ (s′)

)
≥ 1. By equation

(6), we also have vh′
(
xh (s)

)
/vh′

(
xh (s′)

)
≥ 1,∀h. This, again by strict monotonicity and

strict concavity of vh, means xh (s) ≤ xh (s′) , ∀h, and hence
∑

h x
h (s) ≤

∑
h x

h (s′). But

this, together with e (s) =
∑

h x
h (s) , ∀s, implies e (s) ≤ e (s′). This is a contradiction to the

assumption that e (s) > e (s′).

Remark 7. This is saying that households will consume more in states with more aggregate

endowments, instead of states with more individual endowments (hence “risk sharing”). This

result does not rely on functional forms of utility, either: it holds even if household have

different utility functions (as long as they are strictly increasing and strictly concave). It is

different when one is trying to compute Walrasian equilibrium: both individual endowments

and utility functions matter then.

Similarly, if there is no aggregate uncertainty, i.e., e (s) = e (s′) ,∀s, s′, then there is no

individual uncertainty: it must be that xh (s) = xh (s′) ,∀s, s′,∀h. This is the most obvious

way to see “risk sharing”. (More generally, it can be thought of as risk sharing when the

ratio of marginal utilities between two households is constant across time and states.)

This result does rely on that households agree on subjective probabilities. Suppose there

are 2 households and there is no aggregate uncertainty, but they disagree on subjective

probabilities. For all states s and s′ such that π1
s

π2
s
>

π1
s′
π2
s′

, we have x1 (s) > x1 (s′). This is

because

π1
sv

1′ (x1 (s))

π1
s′v

1′ (x1 (s′))
=

π2
sv

2′ (x2 (s))

π2
s′v

2′ (x2 (s′))
=⇒ v1′ (x1 (s))

v1′ (x1 (s′))
<

v2′ (e (s)− x1 (s))

v2′ (e (s′)− x1 (s′))
(7)

Suppose x1 (s) ≤ x1 (s′). Then v1′ (x1 (s)) /v1′ (x1 (s′)) ≥ 1. But e (s)−x1 (s) ≥ e (s′)−x1 (s′)

implies v2′ (e (s)− x1 (s)) /v2′ (e (s′)− x1 (s′)) ≤ 1. This is a contradiction to inequality (7).

Therefore, x1 (s) > x1 (s′) and x2 (s) < x2 (s′): household consumes more in states he believes

relatively (compared to the other’s belief) more likely to happen.
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2.2 Asset Pricing

Write the Lagrangian for household problem in Arrow security markets:

L = uh (x) + λ0
(
p(0) · eh(0)− p(0) · x(0)− α · θ

)
+

S∑
s=1

λs
(
p(s) · eh(s) + θs − p(s) · x(s)

)
Forget about non-negativity constraints, and take first order conditions wrt xl (s) ,∀l =

1, . . . , L, ∀s = 0, 1, . . . , S:
∂

∂xl (s)
uh (x) = λspl (s)

First order conditions wrt θs,∀s = 1, . . . , S

λ0αs = λs

Therefore, ∀l = 1, . . . , L, ∀s = 1, . . . , S

uhl0 (x)

pl (0)
αs =

uhls (x)

pl (s)

where uhls (x) := ∂
∂xl(s)

uh (x). This is the fundamental equation for asset pricing. (It is

“fundamental” because once we have prices of Arrow securities, we can price any other

financial security by no arbitrage, since any given financial security could be replicated by

Arrow securities.) The intuition is nice: the LHS represents the marginal cost (in terms

of utility) of buying one more unit of Arrow security s, whereas the RHS stands for the

marginal benefit (in terms of utility) of buying one more unit of Arrow security s. A simple

corollary is that MRS are equalized across households, as they face the same prices.

Note that we have endogenous variables in both sides of the equation, so it is not an

explicit solution but an equilibrium condition. To obtain equilibrium prices, one needs to

plug in the equilibrium allocation. This equation can be further simplified, if we recall that

prices are normalized so that p1 (s) = 1,∀s = 0, 1, . . . , S:

αs =
uh1s (x)

uh10 (x)
= MRSh1s,10
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Recitation 5: General Equilibrium with Incomplete Asset Markets
Xincheng Qiu (qiux@sas.upenn.edu)

1 No-Arbitrage

Now we look at an economy with J financial assets. A financial asset j is characterized by

a vector of dividends/payoffs denoted dj ∈ RS: it is a contract that specifies for each state

in the next period, s = 1, . . . , S, the seller of the contract has to transfer djs (which could be

either positive or negative) units of numéraire commodities to the buyer. Arrow securities

are a particular example of a financial asset.

Define the “pay-off matrix”A to have elements asj = djs. Asset prices are denoted q ∈ RJ .

A portfolio is a vector θ ∈ RJ that specifies holdings of each asset. A key idea in asset pricing

is no-arbitrage: there is no free lunch. It is impossible to get a profit for sure at no cost.

Definition 1. An arbitrage opportunity is a portfolio θ ∈ RJ such that q · θ ≤ 0 and Aθ > 0

or such that q · θ < 0 and Aθ ≥ 0. A security price system is arbitrage free if there does not

exist such θ.

Remark 1. Assume agents have strictly increasing utility functions. We have seen before that

prices must be strictly positive for households optimization to have a well-defined solution.

Similarly, asset prices must preclude arbitrage to ensure that the maximization problem

here has a well-defined solution. That is, no-arbitrage is a necessary condition for general

equilibrium. It provides characterizations of asset prices without information on preferences.

Theorem 1. (Fundamental Theorem of Asset Pricing) A security price system q ∈ RJ

precludes arbitrage if and only if there exists a state price vector α ∈ RS
++ such that q> =

α>A.

Remark 2. It states that absence of arbitrage is equivalent to the existence of strictly positive

state prices and both directions are important. One implication is that if there is no arbitrage,

replicating portfolios should be priced exactly the same since they have the same payoff

vector. And because of this, we assume throughout that A has full column rank J (and

J ≤ S). This provides the basis for many results in asset pricing (and hence “fundamental”):

you can price any financial securities and derivatives once you obtain the payoff vector and

state prices. For example, the payoff vector of a risk-free bond is (1, 1, . . . , 1) and the price

of the bond that precludes arbitrage should be
∑S

s=1 αs.

1



Remark 3. It is not a coincidence that we use the same notation α for both state prices and

Arrow security prices. When there are J = S securities (whose price vector is q and payoff

matrix is A), we call it a complete asset market, and GEI (defined below) is equivalent to

a Arrow-Debreu equilibrium. By the Fundamental Theorem of Asset Pricing, no arbitrage

means there exists a state price vector α ∈ RS
++ such that q> = α>A. In fact, since A is

a square matrix and has full rank when J = S, α is unique and α> = q>A−1. The pay-

off matrix for Arrow securities is I, so the Arrow security prices are α>I. This is just a

reformulation of Arrow’s model. The very point of a financial market being complete is that

we can replicate the full set of Arrow securities using those financial securities and hence

equivalent to Arrow-Debreu.

Remark 4. There can be many prices consistent with no-arbitrage. Whether a price system

is consistent with no-arbitrage does not depend on the probability distribution of states,

which does matter for equilibrium prices. Even so, two states sharing the same state price

in equilibrium does not mean that they have the same probability.

Remark 5. The proof uses the separating hyperplane theorem (see slides). To illustrate why

it is important to have strictly positive state prices, here is a simple “proof” which considers

the case of a complete market (J = S). Since A is full rank, there exists a (unique) vector

α such that q> = α>A. Then we prove no-arbitrage is equivalent to α� 0.

Suppose αi ≤ 0 for some i. Consider a portfolio θ such that

Aθ =

(
0, . . . , 0, 1︸︷︷︸

ith

, 0, . . . , 0

)>
> 0

(again, its existence is guaranteed by full rank). Then q>θ = α>Aθ = αi ≤ 0, which violates

arbitrage free.

Consider the other direction and suppose q is subjective to arbitrage, that is, we can find

a portfolio θ such that q · θ < 0 and Aθ ≥ 0 (or q · θ ≤ 0 and Aθ > 0), but q>θ = α>Aθ

implies that there must be some αi ≤ 0.

Exercise 1. Suppose there are 3 states. At date 0, agents can trade in two primary securities

with prices q1 = 0.1, q2 = 1.1 and second-period payoff vectors d1 = (1, 0, 0)′ , d2 = (1, 2, 3)′.

1. Suppose there is a call option on security 2 with strike price of 1. What possible prices

are consistent with no arbitrage?

2. Suppose q3 = 1. Find an arbitrage opportunity.

2



3. Assume these security prices q = (0.1, 1.1, 0.6). What would be the market price of a

put option on asset 2 with a strike price of 3? What would be the risk-free interest

rate on a loan taken at date 0?

Solution.

1. The payoff vector of the call option is d3 = (0, 1, 2). By the Fundamental Theorem of

Asset Pricing, if prices are consistent with no arbitrage, then there exists state prices

α> = (α1, α2, α3)� 0 such that

(0.1, 1.1, q3) = (α1, α2, α3)

 1 1 0

0 2 1

0 3 2

 =⇒


α1 = 0.1

α1 + 2α2 + 3α3 = 1.1

α2 + 2α3 = q3

So α1 = 0.1, 2α2 + 3α3 = 1 and α2 ∈
(
0, 1

2

)
, α3 ∈

(
0, 1

3

)
. Therefore, q3 = 1

2
(1− 3α3) +

2α3 = 1
2

+ 1
2
α3 ∈

(
1
2
, 2
3

)
.

2. From (1) we know q3 = 1 does not preclude arbitrage. Here is an arbitrage strategy:

buy one unit of security 2, and sell one unit of security 1 and 3. At date 0, the cost of

this portfolio is 1.1− 0.1− 1 = 0. At date 1, the payoff vector is (0, 1, 1) > 0.

3. From (1) we know this price vector is consistent with no arbitrage. By the Fundamental

Theorem of Asset Pricing, we can solve for the state prices:

(0.1, 1.1, 0.6) = (α1, α2, α3)

 1 1 0

0 2 1

0 3 2

 =⇒


α1 = 0.1

α2 = 0.2

α3 = 0.2

A put option on asset 2 with a strike price of 3 has a payoff vector (2, 1, 0)′. The

arbitrage-free price should be (0.1, 0.2, 0.2) · (2, 1, 0) = 0.4.

A risk-free bond has a payoff vector (1, 1, 1)′, the arbitrage-free price is (0.1, 0.2, 0.2) ·
(1, 1, 1) = 0.5. Hence the interest rate is 1/0.5− 1 = 100%.

Exercise 2. For this question, it is extremely helpful to use Linear Programming type

graphs. I will Illustrate it on the blackboard. The idea is that the known prices give us

linear constraints about some state prices, and the unknown price is a linear function of

those state prices. Draw the feasible area in a Cartesian coordinate system, and find out the

range (i.e. max and min) of the linear objective function. Even if you cannot immediately

3



identify the maximum and minimum, the following fact in linear programming guarantees

that you can simply try out the corners of the feasible area:

Fact. Every linear program has an extreme point that is an optimal solution.

Corollary. An algorithm to solve a linear program only needs to consider extreme points.

1. Suppose there are 3 states and 2 assets. The assets pay

A =

 1 3

1 1

3 0


If the price of asset 1 is 1, what are the prices of asset 2 that are consistent with no

arbitrage?

2. Suppose there are 4 states and 3 assets. The assets pay

A =


1 3 1

0 1 1

3 0 1

2 0 1


If the prices of assets 1 and 2 are both 1, what are the possible prices for asset 3 that

are consistent with no arbitrage?

Example 1. A useful trick. If (q1, q2, q3) and the first payoff matrix precludes arbitrage,

q1 q2 q3

1 1 1

2 0 3

1 3 0

0 0 1

2 1 2


−→



q1 + q3 q2 q3

2 1 1

5 0 3

1 3 0

1 0 1

4 1 2


−→



q1 + q3 q2 q3

1 1
2

1
2

1 0 3
5

1 3 0

1 0 1

1 1
4

1
2


−→



1 q2
q1+q3

q3
q1+q3

1 1
2

1
2

1 0 3
5

1 3 0

1 0 1

1 1
4

1
2


then

(
1, q2

q1+q3
, q3
q1+q3

)
and the last payoff matrix also does. This implies that there exists

positive state prices such that
∑5

s=1 αs = 1 and(
q2

q1 + q3
,

q3
q1 + q3

)
= α1

(
1

2
,
1

2

)
+ α2

(
0,

3

5

)
+ α3(3, 0) + α4(0, 1) + α5

(
1

4
,
1

2

)

4



which means
(

q2
q1+q3

, q3
q1+q3

)
is in the interior of the convex cone spanned by the five points.

2 Incomplete Asset Markets

If J < S, the asset markets are incomplete. It is widely believed that asset markets are

incomplete (moral hazard, transaction costs, or some financial instruments simply have not

been invented, etc).

Definition 2. A General equilibrium with (potentially) incomplete asset markets (GEI) is

a collection of portfolio-holdings
(
θh
)
∈ RHJ , households consumption

(
xh
)
h∈H ∈ RHL(S+1)

+ ,

spot prices (p(s))Ss=0 and asset prices q ∈ RJ such that

1. Household optimization: ∀h ∈ H,

(
xh, θh

)
∈ arg max

θ∈RJ ,x∈RL(S+1)
+

uh(x)

s.t. p(0) · x(0) ≤ p(0) · eh(0)− q · θ

p(s) · xh(s) ≤ p(s) · eh(s) +
∑
j∈J

djsθ
j s = 1, . . . , S

2. Market clearing:
∑

h∈H θ
h = 0 and

∑
h∈H

(
xh − eh

)
= 0.

For existence and welfare theorems of GEI, 2011 Final Q3 is a good example for ref-

erence. Existence theorem still holds for incomplete markets economy under the standard

assumptions of utility functions and initial endowments: under weak assumptions on the

asset payoff matrices, assuming strictly increasing and strictly concave utility and interior

endowments, standard methods can be used to prove that an equilibrium in our economy

always exists. First welfare theorem no longer holds if markets are not complete. In fact,

GEI is generically Pareto inefficient. Second welfare theorem still holds.

Example 2. An example for the failure of FWT. Consider an economy with 2 households,

2 physical goods, and 2 periods with 2 states in the second period. Suppose Uh (x) =

uh (x0) + π1u
h (x1) + π2u

h (x2), where uh (xs) = lnxs1 + lnxs2. Endowments are e10 = e11 =

e12 = e20 = e21 = (1, 1), e22 = (0, 0). Spot markets exist, but there is only Arrow security for

state 1. Autarky is an equilibrium with prices p01 = p02 = p11 = p12 = p21 = p22 = 1 and

α1 = π1. But this is not Pareto efficient: there exists small 0 < ε, δ < 1 such that

U1((1, 1, 1 + ε, 1 + ε, 1− δ, 1− δ)) ≥ 0 = U1
(
e1
)

U2((1, 1, 1− ε, 1− ε, δ, δ)) > −∞ = U2
(
e2
)

5
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Recitation 6: Core
Xincheng Qiu (qiux@sas.upenn.edu)

So far we have assumed price taking, where agents will not realize that his behavior will

affect prices. Now we introduce a solution concept “core”, reflecting a notion of stability,

to take into account interactions: no subgroup of agents can use their own endowments

and find an allocation in which each one of them is better off (with one strictly better off).

Note that it is different from the main focus of 703, which takes a non-cooperative approach

and concerns unilateral deviation; here it is a cooperative approach to think about “blocking

coalitions”.

Definition 1. Given an exchange economy E, a feasible allocation
(
ch
)
h∈H is in the core if

there does not exist a blocking coalition, i.e., there does not exist a subset of consumers S ⊂ H
with consumptions

(
c̃h
)
h∈S such that

∑
h∈S c̃

h ≤ ∑h∈S e
h and such that uh

(
c̃h
)
≥ uh

(
ch
)

for all h ∈ S where the inequality holds strict for at least one.

Theorem 1. All core allocations are Pareto-efficient.

Proof. Contrapositive: Pareto efficiency is saying that H cannot form a blocking coalition.

So Pareto inefficiency implies that H is a blocking coalition.

Now we provide two theorems that are parallel to FWT and SWT.

Theorem 2. Assume (A2) or (LNS). A Walrasian equilibrium allocation is in the core.

Proof. The proof strategy is essentially parallel to FWT and proceeds ad absurdum. Suppose

x∗ = (x∗1, . . . , x
∗
H) is a Walrasian allocation with corresponding price p∗, but not in the core.

That is, ∃S ⊂ H and {yi}i∈S with

yi %i x
∗
i ,∀i ∈ S and yj �j x

∗
j ,∃j ∈ S

Since x∗ is a Walrasian allocation, p∗ · y∗i ≥ p∗wi,∀i ∈ S and p∗ · y∗j > p∗wj,∃j ∈ S. But this

contradicts with
∑

i∈S (y∗i − w∗i ) ≤ 0.

Remark 1. This guarantees that the core is nonempty for any pure exchange economy for

which we know there exists a Walrasian equilibrium. If agents’ preferences are not convex,

there may not be a Walrasian equilibrium, but there may still exist an allocation in the core

(see Figure (1) for an example). In fact, the result of core being nonempty is quite general.

1



Figure 1: Example for Nonexistence of WE But Core Nonempty

3. (a) See the proof in the note.

(b) Suppose that agent 1’s preference is not convex. Even so, an allocation x in the following

figure is in the core. The existence of such x does not at all imply the existence of a

Walrasian equilibrium.

x

e

(c) Consider a maximization problem

max
x1,x2∈R2

+

u1(x1, x2) s.t. x1 ≤ e1, x2 ≤ e2, and u2(e1 − x1, e2 − x2) ≥ u2(e2) ,

where el = e1l + e2l is the total endowment of good l. The constraint set

K =
{

(x1, x2) ∈ R2
+ : x1 ≤ e1, x2 ≤ e2, u

2(e1 − x1, e2 − x2) ≥ u2(e2)
}

is nonempty, bounded and closed since u2 is continuous. Hence, the problem above

indeed has a solution. Let (c11, c
1
2) be any solution to it and let c2l = el − c1l for l = 1, 2.

We will show that allocation (cil)i,l is in the core.

Since e1 ∈ K, u1(c1) ≥ u1(e1). Trivially, u2(c2) ≥ u2(e2) by the constraint. So, each

agent cannot form a blocking coalition by herself.

Now suppose there is a feasible allocation (c̃il)i,l such that ui(c̃i) ≥ ui(ci) for each i, with

the inequality being strict for at least one agent. If u1(c̃1) > u1(c1), c̃1 /∈ K by definition

of c1. Since c̃ is feasible, it must be the case that u2(c̃2) < u2(c2). Contradiction. Hence,

we have u2(c̃2) > u2(c2) and u1(c̃1) = u1(c1). Since u2 is strictly increasing, at least one

of c̃21 and c̃22 is positive. WLOG, assume c̃21 > 0. Since u2 is continuous, u2(c̃21 − ε, c̃22) >
u(c2) for sufficiently small ε > 0. However, this implies that (c̃11 + ε, c̃12) ∈ K while it

gives agent 1 a higher utility than c1, which is a contradiction. Therefore, the set of

both agents cannot be a blocking coalition, either, and allocation c is in the core.

3

One may try to prove that for a two-agent two-good exchange economy where agents’ utility

functions are continuous and strictly increasing (but not necessarily concave), the core is

nonempty.

Proof. Consider a maximization problem

max
x1,x2∈R2

+

u1 (x1, x2) s.t. x1 ≤ e1, x2 ≤ e2, and u2 (e1 − x1, e2 − x2) ≥ u2
(
e2
)

The constraint set, denoted K, is nonempty, bounded and closed (by continuity of u). So

the above maximization problem has a solution, denoted (c1
1, c

1
2). Define c2

l = el − c1
l and we

will show that allocation (c1, c2) is in the core hence nonempty.

First, we prove that there is no singleton blocking coalition. Since e1 ∈ K, by definition

u1 (c1) ≥ u1 (e1). And trivially u2 (c2) ≥ u2 (e2) by the constraint. So each agent cannot

form a blocking coalition by herself.

Next, we prove that two agents together cannot form a blocking coalition either, and

proceed by contradiction. Suppose there is a feasible allocation (c̃1, c̃2) such that ui (c̃i) ≥
ui (ci) for each i, with the inequality being strict for at least one agent.

If u1 (c̃1) > u1 (c1), then c̃1 /∈ K by definition of c1. Since c̃1 is feasible and satisfies

the first two constraints, it must violate the last one, and u2 (c̃2) < u2 (e2). But this is a

contradiction. So u2 (c̃2) > u2 (c2) and u1 (c̃1) = u1 (c1).

Since u2 is strictly increasing, at least one of c̃2
1 and c̃2

2 is strictly positive. WLOG, assume

c̃2
1 > 0. Since u2 is continuous, u2 (c̃2

1 − ε, c̃2
2) > u2 (c2) for sufficiently small ε > 0. However,

this implies that (c̃1
1 + ε, c̃1

2) ∈ K while it gives agent 1 higher utility than c1, which is a

contradiction.
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Remark 2. Given Theorem 1 and 2, FWT is a straightforward corollary. The assumption

needed is the same as FWT: A2 or LNS. An example of an economy in which there is a

Walrasian equilibrium allocation that is not in the core violates local nonsatiation. For

example, a two-person two-good economy where u1 (x1, x2) = 1, u2 (x1, x2) = x1x2 and e1 =

e2 = (1, 1). Then no trade can be a Walrasian equilibrium under p = (1, 1). But this is not

Parento efficient hence not in the core, as giving all the goods to agent 2 makes him better

off without harming agent 1.

We would like to have some result akin to SWT, about whether core allocation can be

supported as an equilibrium. To formalize this result, we need one more definition of replica:

Definition 2. Start with an exchange economy with H households E1 =
(
uh, eh

)
h∈H. For

each number n = 1, 2, 3, . . . , we can construct an economy En (replica) with nH households

where there are n identical consumers of each type h such that

u(h,i) = u(h,j) = uh, e(h,i) = e(h,j) = eh

for all i, j = 1, . . . , n of the same type h.

Lemma 1. (“Equal Treatment” Property) Assume (A4’). For each n ≥ 0, if
(
c(h,i)

)
h ∈

H, i = 1, . . . , n is in the core, then c(h,i) = c(h,j) for all i, j = 1, ., n.

Proof. Pick the least desired (under uh) consumption which occurs for each type h, denoted

c̃(h). Suppose there is type h̄ such that c(h,i) 6= c(h,j) for some i, j. We can prove that the

worst agents among each type can form a blocking coalition.

By strict concavity

uh

(
1

n

n∑

i=1

chi

)
≥ 1

n

n∑

i=1

uh
(
chi
)
≥ uh (c̃ (h)) ,∀h

uh̄

(
1

n

n∑

i=1

ch̄i

)
>

1

n

n∑

i=1

uh̄
(
ch̄i
)
≥ uh̄

(
c̃
(
h̄
))

By feasibility,
∑H

h=1

(
1
n

∑n
i=1 c

hi − eh
)

= 0. The set consisting of one consumer of each

type, each of whom is the worst off would block the allocation - a contradiction.

This lemma, together with the fact that equilibrium allocations are in the core, implies

that equilibrium consumption is equal across individuals of the same type. Furthermore, the

lemma implies that the equilibrium allocations and prices are the same for all n.

Theorem 3. (Core Convergence Theorem) (Under standard assumptions) If x∗ = (x∗1, . . . , x
∗
H)

is the core for every replica, x∗ is Walrasian.
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Remark 3. The proof idea is that for any allocation x that is not Walrasian, we can find a

sufficiently large replica where x is not in its core. This theorem provides a good justification

for the competitive paradigm: as the number of households is getting larger, any allocation

that is always in the core, can also be obtained as a Walrasian equilibrium.

Summary.

• Definition: no blocking coalition.

• W.E. is in the core: parellel to FWT proof.

• Equal Treatment lemma: same type gets the same allocation in the core (proof idea:

pick the worst agents among each type to form a blocking coalition).

• Core Convergence Theorem: if an allocation is in the core for every replica, it is W.E.

4



Econ 701B Fall 2018 University of Pennsylvania

Recitation 7: Public Good
Xincheng Qiu (qiux@sas.upenn.edu)

So far we have been talking about private goods. Now we turn to public goods, which

are different from private goods in two properties: first, public goods are non-excludable:

it cannot be denied a given agent; second, public goods are non-rival: consumption by one

agent does not reduce the possibility of consumption by other agents.

1 Optimal Provision

The optimal provision of public good solves

max
{x,y,z}≥0

u1 (x1, y)

ui (xi, y) ≥ ui for i = 2, 3, . . . , n

E −
n∑

h=1

xh − z ≥ 0

f (z) − y ≥ 0

From Interior Kuhn-Tucker conditions we can obtain

n∑
h=1

∂uh
(
xh, y

)
/∂y

∂uh (xh, y) /∂xh
=

1

f ′(z)

which can be written as
∑

hMRSh = MRT (Samuelson condition).

Remark 1. MRSh, measuring the quantity of private goods household h would be willing to

give up for an additional unit of public good, is a notion of marginal benefit for household h

from consuming the public good in terms of the private good.
∑

hMRSh is hence the social

marginal benefit. MRT , measuring the quantity of private good that is actually required

to produce the additional unit of public good, is a notion of marginal cost in producing the

public good in terms of the private good. Using Econ 1 language, Samuelson condition is

saying that social optimum means social marginal benefit = social marginal cost.

1



2 Private Provision

Suppose household can choose to contribute part of their endowments to public good pro-

duction. This translates to household h solving

max
0≤zh≤eh

uh

(
eh − zh, f

(
zh +

∑
j 6=h

zj

))

which leads to ∂uh/∂y
∂uh/∂xh = 1

f ′(z)
(or, MRSh = MRT ) for interior solutions.

Alternatively, we could formulate the above idea in competitive markets for private and

public goods. Firm solves maxz≥0 pf(z)− z, which gives p = 1
f ′(z)

. Household h solves, after

obvious simplifications,

max
0≤yh≤eh/p

uh

(
eh − pyh, yh +

∑
j 6=h

yj

)

which gives ∂uh/∂y
∂uh/∂xh = p for interior solutions1.

But either formulation means
∑

h MRSh > MRT , which violates Samuelson condition.

We have under-provision of the public good (MRSyx being too high translates to y being too

little, x being to much). This inefficiency comes from the positive externality that agents do

not consider the benefit to others when making decisions.

3 Lindahl Equilibrium

The idea of Lindahl equilibrium is to charge each agent a personalized price (which adds up

to a total price to firms), and agents agree on the level of public good.

Definition 1. A Lindahl equilibrium is
((

ph∗
)
h∈H ,

(
xh∗)

h∈H , y∗
)

such that

• Firm optimization

y∗ = arg max
y≥0

(∑
h

ph∗

)
y − f−1(y)

1A more formal argument should be the following. Assume uh satisfies Inada condition regarding x, then

x cannot be a cornor solution, and F.O.C. gives ∂uh/∂y
∂uh/∂xh ≤ p for all h. Assume we also have Inada condition

regarding y, then y cannot be 0 under maximization (note that it is not saying that yh cannot be 0), so there

must be some h buying the public good, and hence ∂uh/∂y
∂uh/∂xh = p.

2



• Households optimization

(
xh∗, y∗

)
= arg max

xh,y
uh
(
xh, y

)
s.t. eh + sh

(∑
h

ph∗y∗ − f−1 (y∗)

)
− xh − ph∗y ≥ 0

• Market clearing ∑
h

xh∗ + f−1 (y∗) ≤
∑
h

eh

Firm FOC gives
∑

h p
h∗ = 1

f ′(f−1(y∗))
. Households FOC gives

∂uh(xh∗,y∗)/∂y
∂uh(xh∗,y∗)/∂xh

= ph∗. They

together imply ∑
h

∂uh
(
xh∗, y∗

)
/∂y

∂uh (xh∗, y∗) /∂xh
=
∑
h

ph∗ =
1

f ′ (f−1 (y∗))

so the Samuelson condition is verified.

Proposition 1. A Lindahl equilibrium allocation is Pareto optimal.

Remark 2. It is in every consumer’s interest to understate his desire for the public good.

Truth telling is not an equilibrium.

4 A Big Picture for the Course

In 701A, we formalize individual decision problem (e.g. for consumers, for firms, and under

uncertainty): how to pick the “best” alternative under a given constraint. Such a problem

naturally requires a well-defined notion for what we mean by the“best”, i.e., a way to compare

various feasible alternatives. This is where “preferences” come in.

701B brings together different agents, where all households and firms are optimizing, and

in addition, they achieve a notion of consistency, i.e., market clearing. This is the idea of

Walrasian equilibrium, which lies at the core of 701B. FWT provides justification for WE

being“good” in the sense that every WE is PO. [Here, the notion of being“good” is a little bit

vague – now we are comparing different allocations, and need to define a collective preference.

Going further takes you to the problem of aggregation of preferences and social choice theory.]

SWT saves WE more: name any interior PO you like, and it could be supported as a WE.

Then we prove existence.

Though we start with an exchange economy, we could add production into the model.

Linear technology is an interesting example. We could also extend the model to incorporate

3



dynamics and/or uncertainty. We have Debreu’s formulation and Arrow’s formulation, and

it turns out that they are equivalent. We can see a risk sharing property from this model. We

can derive an equilibrium condition characterizing Arrow security prices, and thus can price

any financial security by no arbitrage. No arbitrage is a necessary condition for equilibrium.

(We have seen some other “no free lunch” ideas parallel to this one: prices cannot be negative

in equilibrium; a linear activity cannot generate positive profits in equilibrium.) We further

relax the assumption to consider general equilibrium under incomplete asset markets, where

FWT generally fails. If the asset market is complete, we go back to Arrow-Debreu model.

Next, we look at a notion of stability. An allocation is in the core if there is no blocking

coalition. PO is a necessary condition for being in the core. Equal treatment is another

implication if assuming strict concavity. We have two results akin to FWT and SWT: first,

WE is in the core; second, if an allocation is in the core for every replica, it is Walrasian.

So far we have been looking at commodities markets, where prices are such that you

can get any good you desire as long as you pay the price; and prices clear the market. In

matching markets, however, prices do not work in this way. We briefly introduce matching.

Public goods give an interesting case where FWT fails. Private provision under a standard

market mechanism leads to inefficient (and too low) provision of the public goods. Lindahl

equilibrium is a trial to achieve optimum in a decentralized institution. [Thinking further

of the incentive compatibility takes you to the problem of implementation and mechanism

design theory.]
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Question 1. Consider a two-period economy with two agents and a single consumption good.

Agent h’s preferences over consumption streams
(
ch1 , c

h
2

)
(chi is the consumption of the good

by h in period i) are represented by the separable utility function uh
(
ch1
)

+ δuh
(
ch2
)

where

uh (·) is strictly increasing, strictly concave and differentiable, h = 1, 2, and uh
′
(0) = ∞.

Both agents have strictly positive endowments in each period and the aggregate endowment

of the good in period 1 is strictly greater than the aggregate endowment in period 2.

(a) Show ch1 > ch2 in a competitive equilibrium for this economy for h = 1, 2.

Solution. Since utility is strictly increasing, prices must be positive, and hence can be

normalized to (1, p). Inada condition helps rule out corner solutions, so in a competitive

equilibrium we have
u1

′
(c11)

δu1′ (c12)
=

u2
′
(c21)

δu2′ (c22)
=

1

p
(1)

which implies
u1

′
(c11)

u1′ (c12)
=
u2

′
(e1 − c11)

u2′ (e2 − c12)
(2)

by market clearing conditions. Suppose the statement is not true, and without loss of

generality, suppose c11 ≤ c12. Since uh (·) is strictly increasing and strictly concave, this

implies
u1

′
(c11)

u1′(c12)
≥ 1. Because e1 > e2, we have e1 − c11 > e2 − c12 and hence again by strict

monotonicity and strict concavity of u2 (·), u2
′
(e1−c11)

u2
′(e2−c12)

< 1. But this is a contradiction.

(b) How does the answer to part a change if the good is storable, that is, endowment in

period 1 can be held over to period 2?

Solution. Now there is one more ingredient in households’ problem: they decide the amount

of the good in period 1 to be carried over to period 2. (It is equivalent to model that everyone

has a linear technology which can produce 1 unit of good in Period 2 using 1 unit of good

in Period 1 as an input.) Or formally,

(
ch1 , c

h
2 , s

h
)

= arg max
(c1,c2,s)≥0

uh (c1) + δuh (c2)

s.t. (c1 + s) + p (c2 − s) ≤ eh1 + peh2

1



The market clearing condition are modified to
∑

h

(
ch1 + sh

)
= e1,

∑
h

(
ch2 − sh

)
= e2.

• If p > 1, no one will buy the good in Period 2 as they can always store the good from

Period 1 which is cheaper, so the second market clearing condition cannot hold. (This

can be thought of as the result that a linear activity cannot generate positive profit in

equilibrium.)

• If p < 1, we will have s1 = s2 = 0. (This is essentially the result that a linear activity

with negative profit will not be used in equilibrium.) Then we get the same condition

as equation (2) in (a). Therefore by the same logic, ch1 > ch2 ,∀h = 1, 2. We have p > δ

in equilibrium.

• If p = 1, then household problem F.O.C. gives
uh

′
(ch1)

δuh′(ch2)
= 1

p
= 1. Then 0 < δ < 1

implies uh
′ (
ch1
)
< uh

′ (
ch2
)

and hence ch1 > ch2 ,∀h = 1, 2.

That is, we still have ch1 > ch2 in a competitive equilibrium for h = 1, 2.

(c) How would the answer to part b change if the aggregate endowment of the good in

period 1 is strictly less than the aggregate endowment in period 2?

Solution. Notice that c11 + c21 = e1 − s < e2 + s = c12 + c22, where s ≥ 0 denotes the

aggregate storage. Then from the equilibrium condition (1) we can show that it must be

ch1 < ch2 , ∀h = 1, 2 by strict monotonicity and strict concavity of the utility function.

You can alternatively argue through prices. As in (b), we know that it cannot be that

p > 1. We can also argue that p 6= 1, as otherwise household problem F.O.C. gives ch1 > ch2 ,

and hence e1 =
∑

h

(
ch1 + sh

)
>
∑

h

(
ch2 − sh

)
= e2, which is a contradiction to e1 < e2.

Therefore, p < 1, and thus s1 = s2 = 0. We will get the same condition as equation (2) in

(a), except for that now we have e1 < e2. By the same logic as above, ch1 < ch2 , ∀h = 1, 2. We

have p < δ in equilibrium.

Question 2. Two farmers face the possibility that the river on which their farms lie might

flood. For simplicity suppose that either of their farms might flood, but not both. The

chance that either farm might flood is 1/4. Each farmer’s crop will be 200 if his farm doesn’t

flood and 0 if it does flood. Each has a von Neumann-Morgenstern utility function with

utility for the good being u (x) = ln x.

(a) Compute the Arrow-Debreu equilibrium for this economy, where the farmers can trade

contingent commodities before it is known whose farm might flood. What is the ex-

pected utility of each farmer?

2



Solution. Define three states as: (1) farmer 1’s field is flooded; (2) farmer 2’s field is flooded;

(3) neither is flooded. Then endowments can be written as

e1 = (0, 200, 200) , e2 = (200, 0, 200)

The aggregate endowments are e = (200, 200, 400).

Note that ln utility (with positive probabilities) leads to positive prices and rules out

corner solutions. In Arrow-Debreu equilibrium, we have ∀h = 1, 2, and ∀s, t ∈ {1, 2, 3},

πs
(
xhs
)−1

πt
(
xht
)−1 =

ps
pt

(3)

which implies
x1t
x1s

=
x2t
x2s

=
x1t+x

2
t

x1s+x
2
s

= et
es

, and hence ps
pt

= πs
πt

et
es

. Therefore, the price vector is

(1, 1, 1) after normalization. We can derive the equilibrium allocation (very quickly if you

exploit that two farmers are equally wealthy)

x1 = x2 = (100, 100, 200)

and hence the expected utility of each farmer is

U1 = U2 =
1

4
ln 100 +

1

4
ln 100 +

1

2
ln 200 = ln

(
100
√

2
)

(b) Suppose now that there is probability 0 that farmer 1’s field will be flooded but the

probability that farmer 2’s field will be flooded is still 1/4. How would your answer to

part (a) change?

Solution. Now the probabilities become π1 = 0, π2 = 1/4, π3 = 3/4. Note that consumption

under state 1 will not add to utility. If p1 > 0, we will have x11 = x21 = 0 and the market

for state 1 cannot clear. Thus it must be p1 = 0. For the other two states, we have the

same condition as equation (3) in (a), except for now s, t ∈ {2, 3}. Similarly, we will have
x12
x13

=
x22
x23

= e2
e3

= 1
2
, and hence p2

p3
= π2

π3

e3
e2

= 2
3
. The price vector is (0, 2, 3).

The utility functional form gives a quick way to write down the Marshallian demand (i.e.

the probabilities of a given state will give the shares of wealth spent on consumption under

this state). Under this price vector, farmer 1’s demand would be x1 = (x11, 125, 250) and

farmer 2’s demand would be x2 = (x21, 75, 150). Anything such that x11 + x21 = 200, x11 ≥
0, x21 ≥ 0 makes it an equilibrium. Now the expected utility is

U1 =
1

4
ln 125 +

3

4
ln 250

3



U2 =
1

4
ln 75 +

3

4
ln 150

(c) Suppose now that weather forecasting becomes perfected so that it will be known

whether or not there will be a flood at the time the contingent claims markets open.

What will be known is whether there will be a flood, but not which farmer will be

affected should there be a flood. How will this affect the ex ante utilities of the farmers?

Solution. When the weather forecasting predicts that there will not be a flood, farmers will

just consume their endowments. When the weather forecasting predicts that there will be a

flood, the conditional probabilities for each state are π1 = 1/2, π2 = 1/2, π3 = 0. Under these

conditional probabilities, we can obtain that p = (1, 1, 0) and x11 = x21 = 100, x12 = x22 = 100

(repeating the previous exercise). Therefore, the ex ante utilities of the farmers are

U1 = U2 =
1

4
ln 100 +

1

4
ln 100 +

1

2
ln 200 = ln

(
100
√

2
)

which is the same as in (a).

Question 3. Consider an exchange economy with two consumers and two goods. Good

x is a perfectly divisible numeraire. Good y, in contrast, is indivisible, that is, consumers

can only consume it in nonnegative integer amounts. The utility of consumer i = 1, 2 from

consuming a bundle (xi, yi) of the two goods is given by ui (xi, yi) = xi + vi (yi), where vi (·)
is a function on nonnegative integers. Assume that

vi(2) > vi(1) = vi(0) = 0, and vi(y) = vi(2) for y > 2

(Think of good y as chopsticks where the value of only one is 0.) Assume also that

v2(2) ≤ v1(2) ≤ 10

The initial endowment of consumer i = 1, 2 is
(
eix, e

i
y

)
. Assume the total endowment of good

y is e1y + e2y = 2, and that e1x = e2x = 20.

(a) Describe the Pareto efficient allocations in this economy.

Solution. The obvious necessary conditions are: there is no waste for x, i.e., x1 + x2 = 40;

and, either one agent gets both units of y, i.e.,y1 = 2, y2 = 0 or y1 = 0, y2 = 2.

• If v1(2) = v2(2), these conditions are also sufficient: they describe all Pareto efficient

allocations.
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• If instead v1(2) > v2(2), an allocation is Pareto efficient if and only if it is non-wasteful,

and either agent 1 gets both units of y; or agent 2 gets both units and x1 < v2(2).

(Note that if agent 2 gets both units of y and x1 ≥ v2(2), we can transfer v2(2) units

of x from agent 1 to agent 2 and let agent 1 get both units of y to achieve a Pareto

improvement.)

(b) Write conditions for a Walrasian equilibrium for this economy.

Solution. First of all, prices must be strictly positive. If price of x is 0, agents will demand

infinite amount of x. If price of y is 0, each agent will demand at least 2 units of y, so market

demand would exceed supply. Thus we can normalize prices to be px = 1 and py = p > 0.

• If 2p > v1(2) ≥ v2(2), no body will demand y so the market cannot clear.

• If 2p < v2(2) ≤ v1(2), each agent will demand both units of y as long as he can afford

them. Indeed, each agent’s wealth is at least 20 > 10 ≥ v2(2) > 2p. Again, the market

cannot clear.

Therefore, the necessary condition for a Walrasian equilibrium is

v2(2) ≤ 2p ≤ v1(2)

• If v1(2) = v2(2), either agent gets both units of y and the other 0.

• If v1(2) < v2(2), then it must be that agent 1 gets both units of y. Otherwise (i.e., if

agent 2 gets them in equilibrium), then it must be v2(2) = 2p < v1(2) and hence agent

1 will demands 2 units of y as well, so demand would exceed supply.

(c) Does a Walrasian equilibrium always exist for such an economy? Either prove that it

does or give a counterexample.

Solution. An equilibrium always exists. Any p satisfying v2(2) ≤ 2p ≤ v1(2) is an equilib-

rium price. For any such p, a corresponding equilibrium allocation is

y1 = 2, x1 = 20 + p
(
e1y − 2

)
, y2 = 0, x2 = 20 + pe2y

(d) If a Walrasian equilibrium exists for such an economy, is it Pareto efficient? Either

explain why it is or provide a counterexample.

Solution. Yes. In part (b) we derive the necessary conditions for a Walrasian equilibrium.

Compared to the results in part (a), we see that any equilibrium allocation must satisfy the

conditions in part (a) and hence is efficient.

5



(e) Suppose we replace the assumption vi(1) = 0 with vi(1) > 0, keeping all the other

assumptions. Will a Walrasian equilibrium now always exist? Either explain why or

give a counterexample.

Solution. From (b) we know that if an equilibrium exists then a necessary condition is

v2(2) ≤ 2p ≤ v1(2). But if for any p satisfying this condition, we also have p < v2(1), then

agent 2 will definitely demand only 1 unit of y. In addition, if p > v1(1), then it is impossible

for agent 1 to demand only 1 unit of y. If we can find such p, then the market for y can never

clear and an equilibrium does not exist. Indeed, such case is possible, for example, when

v1(0) = 0, v1(1) = 1, v1(2) = 12, and

v2(0) = 0, v2(1) = 8, v2(2) = 10
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