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1 Introduction

1.1 History

Game theory as a unique field is often attributed to John von Neumann (1928) and his

following book Theory of Games and Economic Behavior with Oscar Morgenstern (1944).

Their work primarily focused on cooperative game theory. Instead, we are now mainly study-

ing non-cooperative games in this course, which assumes that players cannot sign binding

contracts.

John Nash (1950-51) developed an equilibrium concept now known as Nash equilibrium.

After that, Reinhard Selten (1965) refined Nash equilibrium with the solution concept of

subgame perfect equilibrium, and John Harsanyi (1967) introduced incomplete information

games with the solution concept of Bayesian Nash equilibrium. They three shared the 1994

Nobel prize for their fundamental contributions in the pioneering analysis of equilibria in

non-cooperative games. The Nobel prize was then awarded to more game theorists: Mirrlees

and Vickrey in 1996, Akerlof, Spence and Stiglitz in 2001, Aumann and Schelling in 2005,

Myerson, Hurwitz and Maskin in 2007, Shapley and Roth in 2012, Tirole in 2014, Hart and

Holmstrom in 2016.

∗If you notice any typo, please drop me a line at xincheng.qiu@gmail.com. Comments are also greatly
appreciated. The questions are designed for Problem Set 1 by Prof. Xi Weng at Guanghua School of
Management, Peking University.
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1.2 Why Game Theory

Game theory focuses on strategic interactions among sophisticated individuals.1 Recall that

in price theory, consumers maximize utility subject to budget constraints, and firms maximize

profit given technology and factor prices. In many cases, however, one’s decision alone is far

from sufficient; instead, one’s behavior affects and is affected by behaviors of others directly.

Game theory is the language to describe and the tool to analyze such interactions.

Game theory states how people behave in a certain reasonable2 sense. It provides one

angle to look at complex real-world problems. It is an art to apply game theory to real-world

problems: knowing game theory does not guarantee winning, but it can help understand

strategic interactions.3 Game theory uses some mathematics, but only calculus, probability,

and logic (in this course); Strategic thinking in interactions is much more important.

2 Basic Concepts

Definition 1. Normal Form Games.

A normal form game is the collection of strategy sets for each player and their payoff

functions G = {S1, . . . , Sn, u1, . . . , un}.

Note 1. Three key elements of the normal form of a given game:

1. A set of players: i = 1, 2, ..., n. Here n ≥ 2.

2. Strategy space: Si is a nonempty set, i = 1, 2, ..., n.

3. Payoff functions: ui :
∏n

k=1 Sk → R, i = 1, 2, ..., n.

Equivalently, a normal form game is a vector-valued function u :
∏n

k=1 Sk → Rn.

Definition 2. Extensive Form Games.

We can use a game tree to describe the extensive form of a given game. 4

Note 2. An information set for a player is a collection of decision nodes, where he could not

tell which one he is standing on when making decisions. A game has perfect information if

all information sets are singletons. A strategy for a player in an extensive form game is a list

of choices for every information set of that player.

1You may ask, what does the word “sophisticated” precisely mean here? We will provide several different
meanings of being “sophisticated” in several solution concepts.

2Again, what does the word“reasonable”exactly mean? It will have different interpretations under various
solution concepts.

3Recall the game we played in class to guess the two thirds of the average.
4We focus on games with perfect recall, i.e, every player always remembers what he knew and what he

did previously.
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Remark 1. A strategy for a player is a mapping from all his information sets. It can be

interpreted as a complete and contingent plan covering every circumstance. Why should a

player consider the circumstance that will not arise in a certain strategy profile? Imagine

that the players are worried about the possibility of mistakes in implementation and thus

want to capture all cases.

Definition 3. Mixed Strategies.

We can extend the notion of strategy by allowing players to choose randomly. For player

i, a mixed strategy of σi is a probability distribution over the set of pure strategies Si.
5

Remark 2. It seems natural to use normal forms to describe static games and extensive forms

to describe dynamic games. (Here, “dynamic” or “static” is not really in the sense of time,

but of information.) However, it is not a must to do so. In fact, we can do it in an opposite

way.

How can we introduce mixed strategies in extensive form games? One natural way is to

define mixed strategies on the normal form representation of the extensive form game. It

turns out that, however, there is a simpler way to define mixed strategies directly on each

information set of the extensive form game.

Definition 4. Behavior Strategies.

A behavioral strategy for a player in an extensive form is a list of probability distributions,

one for every information set of that player; each probability distribution is over the set of

choices at the corresponding information set.

Theorem 1. Kuhn’s Theorem (1953).

In extensive forms with perfect recall, every mixed strategy has a realization equivalent

behavior strategy.

Two strategies for player i are realization equivalent if, fixing the strategies of the other

players, the two strategies induce the same distribution over outcomes (terminal nodes).

Note that the theorem might fail to hold without perfect recall. Since this course focuses on

extensive form games with perfect recall, Kuhn’s theorem allows us to restrict attention to

behavioral strategies.

Question 1. Consider the extensive form game showed in Figure 1. What is the normal

form of this game?

5We focus on uncorrelated mixed strategies.
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Figure 1: An Extensive Form Game

Solution. The strategy set for I is {LL′, LR′, RL′, RR′}, and the strategy set for II is

{ll′, lr′, rl′, rr′}. (Remember that a strategy must specify actions in every information set.)

The normal form representation of this game is

player II

ll’ lr’ rl’ rr’

player I

LL’ 3, 1 3, 1 -4, 0 -4, 0

LR’ 1, 0 1, 0 -5, 1 -5, 1

RL’ 2, 1 0, 0 2, 1 0, 0

RR’ 2, 1 0, 0 2, 1 0, 0

RL′ and RR′ are strategically equivalent. So the reduced normal form of this game is

player II

ll’ lr’ rl’ rr’

player I

LL’ 3, 1 3, 1 -4, 0 -4, 0

LR’ 1, 0 1, 0 -5, 1 -5, 1

R 2, 1 0, 0 2, 1 0, 0

3 Solution Concepts

Note 3. The equilibrium solution is a strategy profile. It is different from the equilibrium

outcome or payoff vector which is the sequence of actual actions.

3.1 Dominant Strategy Equilibrium

Definition 5. Strict (Weak) Domination and Dominance.
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1. si strictly dominates ŝi for player i if for every strategy s−i of the other players,

ui (si, s−i) > ui (ŝi, s−i)

If si strictly dominates all other strategies of player i, then we say si is a strictly

dominant strategy for player i.

2. si weakly dominates ŝi for player i if for every strategy s−i of the other players,

ui (si, s−i) ≥ ui (ŝi, s−i)

and there exists s′−i ∈ S−i such that

ui

(
si, s

′
−i

)
>ui

(
ŝi, s

′
−i

)
If si weakly dominates all other strategies of player i, then we saysi is a weakly dominant

strategy for player i.

Criterion 1. Strictly Dominant Strategy.

In a strictly dominant strategy equilibrium, every player plays a strictly dominant strategy.

We can define a weakly dominant strategy equilibrium similarly.

Remark 3. A strictly dominant strategy is the best thing to do. When a player has a strictly

dominant strategy, it would be irrational for him to choose any other strategy, since he would

be worse no matter what the other players do. When there is a dominant strategy for every

player, the game is dominance solvable under the “individual rationality” assumption. This

solution concept only requires each player to be individually rational.

Example 1. Prisoner’s Dilemma.

The Prisoner’s Dilemma game is often used to illustrate a conflict between individual

rationality and collective efficiency.

Example 2. Second-Price Auction.

In a second-price auction, it is a weakly dominant strategy for every player to bid his

true valuation (Vickrey, 1961). Truthful revelation is a weakly dominant strategy for every

player in the pivotal mechanism (Clarke, 1971).6

6It is generalized as the Vickrey-Clarke-Groves Mechanism, and second-price auction is a special case of
it.
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Example 3. Median Voter Theorem.

Consider an election with politicians A and B. Voters’ preferences are distributed on [0, 1]

with a CDF F .7 A and B simultaneously choose their stances from [0, 1] and each voter then

votes for the politician whose stance is closer to his preference. The candidate with more

votes wins. Assume that each candidate wins with the probability of 0.5 if they choose the

same stance. Define x∗ as the median voter such that F (x∗) = 1 − F (x∗) = 0.5. Median

Voter Theorem says that it is weakly dominant for each candidate to choose x∗.

Question 2. Consider the following modification of a two-bidder second-price sealed-bid

auction. Bidder 2 receives an advantage as follows: If bidder 2’s bid is at least 80% of bidder

1’s bid, then bidder 2 wins and pays 80% of bidder 1’s bid. If bidder 2’s bid is less than 80%

of bidder 1’s bid, then bidder 1 wins and pays 1.25 times bidder 2’s bid. Suppose bidder i

values the object being sold at vi, i = 1, 2. Prove that it is a dominant strategy for each bidder

to bid his or her valuation. How would your answer change if bidder 1 paid 1.3 times bidder

2’s bid, when bidder 1 wins (but the other rules of the auction are unchanged)?

Solution. To make it clear, let’s first write explicitly the three key elements of the game.

1. Players: bidder 1 and bidder 2.

2. Strategy sets: S1 = S2 = R+.

3. Payoff Functions:

U1 (b1, b2) =

0 b2 ≥ 0.8b1

v1 − 1.25b2 b2 < 0.8b1

U2 (b1, b2) =

v2 − 0.8b1 b2 ≥ 0.8b1

0 b2 < 0.8b1

We can prove that bidding v1 is a weakly dominant strategy for bidder 1 (and the proof

for bidder 2 is similar). There are two cases.

Case 1: b2 < 0.8v1. Then U1 (v1, b2) = v1 − 1.25b2 ≥ U1 (b1, b2).

Case 2: b2 ≥ 0.8v1. Then U1 (v1, b2) = 0 ≥ U1 (b1, b2).

Thus bidding v1 is optimal. Bidding v1 also weakly dominates every other bid and hence

v1 is weakly dominant. Suppose b1 < v1, there exists b2 ∈ (0.8b1, 0.8v1), with U1 (b1, b2) = 0 <

v1 − 1.25b2 = U1 (v1, b2). Suppose b1 > v1, there exists b2 ∈ (0.8v1, 0.8b1), with U1 (b1, b2) =

v1 − 1.25b2 < 0 = U1 (v1, b2).

7For example, we can interpret 1 as the most “liberal” and 0 as the most “conservative.”
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But when the setup changes, the payoff function for bidder 1 changes:

U1 (b1, b2) =

0 b2 ≥ 0.8b1

v1 − 1.3b2 b2 < 0.8b1

It is still a weakly dominant strategy for bidder 2 to bid his valuation, since his payoff

function is unchanged and dominance is irrelevant of others’ payoff functions. It is not a

dominant strategy for bidder 1 to bid his valuation now. To illustrate, consider when b2

satisfies that 1.25b2 < v1 < 1.3b2. Now bidding v1 makes bidder 1 the winner but yields a

payoff of v1 − 1.3s2 < 0. Bidder 1 prefers to lose, which yields a payoff of 0. To generalize

this, if the payoff function is

U1 (b1, b2) =

0 b2 ≥ αb1

v1 − βb2 b2 < αb1

We can prove that the weakly dominant strategy is b∗1 =
1
αβ
v1.

Case 1: b2 < αb∗1. Then U1 (b
∗
1, b2) = v1 − βb2 ≥ U1 (b1, b2).

Case 2: b2 ≥ αb∗1. Then U1 (b
∗
1, b2) = 0 ≥ U1 (b1, b2).

Thus bidding b∗1 =
1
αβ
v1 is optimal. Bidding b∗1 =

1
αβ
v1 also weakly dominates every other

bid and hence b∗1 = 1
αβ
v1 is weakly dominant. Suppose b1 < b∗1, there exists b2 ∈ (αb1, αb

∗
1),

with U1 (b1, b2) = 0 < v1 − βb2 = U1 (b
∗
1, b2). Suppose b1 > b∗1, there exists b2 ∈ (αb∗1, αb1),

with U1 (b1, b2) = v1 − βb2 < 0 = U1 (b
∗
1, b2).

Therefore, for b∗1to be a weakly dominant strategy, b∗1 =
1
αβ
v1. When α = 0.8 and β = 1.3,

b∗1 =
1

0.8×1.3
v1 =

25
26
v1 is weakly dominant strategy.

3.2 Iterated Elimination of Dominated Strategies (IEDS)

Unfortunately, strictly (weakly) dominant strategy does not always exist. We can go further

if we assume more: players are rational, they know that the other players are also rational,

they know that other players also know that he or she is rational, and so forth. This is called

the common knowledge of rationality.

Definition 6. Dominated Strategy.

If there exists some strategy (including mixed strategies) σ̂i that strictly dominates si,

we say that si is a strictly dominated strategy (and dominated by σ̂i). We can define weakly

dominated strategy similarly.

Note 4. If a strictly (weakly) dominant strategy exists, it is unique. But dominated strategies

are not necessarily unique. The claim that “for some player, strategy x is strictly (weakly)
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dominated” does not mean every other strategy dominates x. It only means there exists

some strategy that dominates x, so you should name it. An analogy: “x is dominated” is

analogous to “x is worse,” so you should keep in mind x is worse than what; but “strategy y

is dominant” is similar to “y is best”, that is, y is better than (or at least as good as) all the

other strategy.

Criterion 2. Iterated Elimination of strictly Dominated Strategies (or Rationalizable Ac-

tions).

Remark 4. Intuitively, rational players do not play strictly dominated strategies, for there

exists another strategy that is always better. To perform strict IEDS, we require that

players are rational and there is common knowledge of rationality. The solution concept that

survives iterated elimination of strictly dominated strategies is also called rationalizability

(i.e., repeatedly remove all actions which are never a best reply). For each player i, a

rationalizable action ai is a best response to certain strategies of other players.

Remark 5. In finite games, the order in which strictly dominated strategies are eliminated

is irrelevant.We can similarly define Iterated Elimination of weakly Dominated Strategies.

However, this procedure has to be dealt with very carefully, since the order of elimination

matters. In order to avoid this problem, it is required to identify all the strategies that are

weakly dominated for every player at every step, and then eliminate all such strategies in

this step.

Example 4. Consider the game shown in the table.

Player 2

L R

Player 1

A 4, 0 0, 0

T 3, 2 2, 2

M 1, 1 0, 0

B 0, 0 1, 1

Order 1: M → L → A → B. Then we are left with (T,R);

Order 2: B → R → T → M . Then we are left with (A,L);

The correct order: eliminate M,B at the same time and we are left with (AT,LR). So

the game does not have an iterated weak dominant-strategy equilibrium.

Remark 6. A rational player may not exclude playing a weakly dominated strategy. It is

possible that a weakly dominated strategy is played in a Nash equilibrium.
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Question 3. An election has three candidates, A, B, C, and three voters, i = 1, 2, 3. The

voting rule is such that: The elected candidate is the one chosen by voter 2 and 3 if they

vote for the same candidate, and the one chosen by voter 1 otherwise. Suppose that u1 (A) >

u1 (B) > u1 (C), u2 (C) > u2 (A) > u2 (B) and u3 (B) > u3 (C) > u3 (A). Find the unique

outcome implied by iterated elimination of dominated strategies.

Solution. In this setting, we only care about the ranking and the number of the utility

itself is meaningless. For simplicity, we can assign numbers for the utility functions. Let

u1 (A) = 3, u1 (B) = 2, u1 (C) = 1; u2 (A) = 2, u2 (B) = 1, u2 (C) = 3; u3 (A) = 1, u3 (B) =

3, u3 (C) = 2.

Note that for voter 1, voting for A is a weakly dominant strategy. To see this, consider

first when voter 2 and voter 3 vote for different candidates, now the one chosen by voter 1

will be elected so voter 1 prefers voting for A. Consider then when voter 2 and voter 3 vote

for the same candidate, now voter 1 will not affect the outcome. Therefore, voting for A is

a weakly dominant strategy for voter 1. In other words, for voter 1, voting for B and voting

for C are weakly dominated by voting for A and thus should be eliminated. Besides, B is a

weakly dominated strategy for voter 2, and A is a weakly dominated strategy for voter 3.

First, for voter 1, eliminate the strategies of voting for B and voting for C; for voter 2,

eliminate B; for voter 3, eliminate A.

Voter 1 chooses A Voter 3

B C

Voter 2
A A (3, 2, 1) A (3, 2, 1)

C A (3, 2, 1) C (1, 3, 2)

Second, for voter 2, eliminate A; for voter 3, eliminate B.

Voter 1 chooses A Voter 3

C

Voter 2 C C (1, 3, 2)

The unique strategy profile that survives weak IEDS is (A,C,C), and the corresponding

outcome is candidate C being chosen.

3.3 Nash Equilibrium

3.3.1 Definition

Unfortunately, the set of rationalizable actions may still be too large.
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Criterion 3. Nash Equilibrium. The strategy profile σ∗ is a Nash Equilibrium if for all i

and all si ∈ Si,

ui

(
σ∗
i , σ

∗
−i

)
≥ ui

(
si, σ

∗
−i

)
Remark 7. Nash equilibrium is basically based on two assumptions:

1. each player is playing his best response given his belief about what the other players

will play;

2. these beliefs are correct in the sense that the beliefs are consistent with actual actions.

“Mutual best responses” and “no deviation” are the usual interpretations, which may help

a lot in solving problems and finding Nash equilibria, but it is far from enough for you to

understand the great concept of Nash equilibrium without catching the importance of belief.

The first assumption is rather acceptable, but the consistency of beliefs with actual

behaviors is a bit strong. There are several justifications for Nash equilibrium, for example,

a self-enforcing agreement, a viable recommendation, or a non-deviation state that players

can converge to by learning or evolution, etc.

Theorem 2. Existence of Nash Equilibrium. (Nash, 1951)

Every finite normal form game has at least one Nash equilibrium in mixed strategies.

We will not prove it here. The main idea is that a Nash equilibrium is mathematically a

fixed point of the best reply correspondence.The existence of Nash equilibria thus boils down

to the existence of fixed points. Then apply Kakutani’s fixed point theorem.

Note 5. How to find (mixed strategy) Nash equilibria?

1. In a Nash equilibrium, a pure strategy that is strictly dominated (by a pure or mixed

strategy) can never be played with positive probability. Therefore, we can first apply

strict IEDS and focus on the reduced game.

2. Indifference Principle. The only reason for the player to randomize these strategies

is that they generate same payoff given the others’ strategy profile. However, it is a

necessary but not sufficient condition for a Nash equilibrium. See the game below.

The mixed strategy profile
(
1
2
, 1
2
, 0
)
,
(
1
2
, 1
2

)
satisfies the indifference principle but is not

a Nash equilibrium. (Player 1 can get better off by choosing D with certainty.)
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Player 2

L R

Player 1

U 3, 0 0, 2

M 0, 2 3, 0

D 2, 0 2, 1

3. In this case, go back to the definition of Nash equilibrium. Calculate the best reply

correspondence and look for mutual best responses.

3.3.2 Relationship between IEDS and NE

Proposition 1. A Nash equilibrium survives strict IEDS. If strict IEDS leads to a unique

outcome, then it is a Nash equilibrium.

Remark 8. If we can perform strict IEDS, all Nash equilibria will survive in the reduced

game. So please always use strict IEDS to simplify the game at first whenever possible. This

is useful in finding Nash equilibria in “large” games.

Proposition 2. If weak IEDS leads to a unique outcome, then it is a Nash equilibrium; but

it may not be the unique NE. Weak IEDS may eliminate some Nash equilibria.

Example 5. Weak IEDS and Nash Equilibrium.

Player 2

L R

Player 1
U 1, 1 0, 0

D 0, 0 0, 0

By performing weak IEDS, the outcome is (U,L). It is a Nash equilibrium but not the

unique one. In fact, (D,R) is also Nash equilibrium. The question is, why would people ever

play(D,R) instead of (U,L)?

Criterion 4. Perfect Equilibrium.

An equilibrium σ of a finite normal from game G is (trembling hand) perfect if there

exists a sequence
{
σk
}
k
of completely mixed strategy profiles converging to σ such that σi is

a best reply to every σk
−i in the sequence.

Proposition 3. Every perfect equilibrium is a Nash equilibrium in weakly undominated

strategies.

Question 4. Can you find other Nash equilibrium in Question 3?
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Solution. The result that survives the weak IEDS (A, C, C) is one Nash equilibrium. But

weak IEDS cannot guarantee that it is the unique Nash equilibrium. To find all Nash

equilibrium, we need to reconsider this game in three 3× 3 tables.

Voter 1 chooses A Voter 3

A B C

Voter 2

A A (3, 2, 1) A (3, 2, 1) A (3, 2, 1)

B A (3, 2, 1) B (2, 1, 3) A (3, 2, 1)

C A (3, 2, 1) A (3, 2, 1) C (1, 3, 2)

Voter 1 chooses B Voter 3

A B C

Voter 2

A A (3, 2, 1) B (2, 1, 3) B (2, 1, 3)

B B (2, 1, 3) B (2, 1, 3) B (2, 1, 3)

C B (2, 1, 3) B (2, 1, 3) C (1, 3, 2)

Voter 1 chooses C Voter 3

A B C

Voter 2

A A (3, 2, 1) C (1, 3, 2) C (1, 3, 2)

B C (1, 3, 2) B (2, 1, 3) C (1, 3, 2)

C C (1, 3, 2) C (1, 3, 2) C (1, 3, 2)

There are 5 Nash equilibria in this game: (A, A, A), (A, A, B), (A, C, C), (B, B, B), and

(C, C, C).

Question 5. Describe the pure strategy Nash equilibrium strategies and outcomes of the

game in Question 1.

Solution. We can see from the answer in Question 1:

player II

ll’ lr’ rl’ rr’

player I

LL’ 3, 1 3, 1 -4, 0 -4, 0

LR’ 1, 0 1, 0 -5, 1 -5, 1

R 2, 1 0, 0 2, 1 0, 0

The pure strategy Nash equilibria are (LL´, ll´), (LL´, lr´) and (R, rl´).
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3.4 Refinements

As we already see, many games have multiple equilibria and they are not equivalent. Which

one is more reasonable? Game theorists develop various equilibrium refinements.

Criterion 5. Subgame Perfection.

The strategy profile s is a subgame perfect equilibrium if s prescribes a Nash equilibrium

in every subgame.

Note 6. How can we find subgame perfect equilibria?

1. One natural way to find subgame perfect equilibria is to follow the definition. First,

find all Nash equilibria. Second, check for each of them if it is still a Nash equilibrium

in every subgame. You can imagine how tedious it is to do so, especially when the

game has many subgames and many Nash equilibria.

2. A quicker way is to apply the backward induction. First, start with a minimal subgame

and select a Nash equilibrium. Second, replace the selected subgame with the payoff

vector associated with the selected Nash equilibrium, and take notes of the strategies.

Now we have a smaller extensive form game. Third, repeat the above two steps, and

in the end obtain one subgame perfect equilibrium. Repeat the procedure by choosing

a different Nash equilibrium in some step and thus obtain a different subgame perfect

equilibrium, and so on.

Question 6. Describe the pure strategy subgame perfect equilibria (there may only be one)

in Question 1.

Solution. By backward induction (Figure 2),

the only subgame perfect equilibrium is (LL´, ll´).

Remark 9. Subgame perfect equilibrium is a refinement of Nash equilibrium. It eliminates

some unreasonable Nash equilibria that involve“incredible threats.” However, some subgame

perfect equilibrium will still be not so reasonable in some sense. Selten’s Horse (Figure 3)

provides an example.

Example 6. Selten’s Horse.

Selten’s Horse game has only one subgame – itself. So the set of subgame perfect equilibria

in this game is exactly the same as that of Nash equilibria.

Player I chooses A Player III

L R

Player II
a 1, 1, 1 1, 1, 1

d 0, 0, 1 4, 4, 0
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Figure 2: Backward Induction

Figure 3: Selten’s Horse
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Player I chooses D Player III

L R

Player II
a 0, 0, 0 3, 2, 2

d 0, 0, 0 3, 2, 2

The pure strategy Nash equilibria and thus subgame perfect equilibria are (A, a, L) , (D, a,R).

Consider the second Nash equilibrium (D, a,R). Player II ’s plan to play a is rational only

in the very limited sense that, given that Player I plays D, what Player II plays does not

affect the outcome. However, if Player II actually finds himself having to make a decision,

d seems to be a better strategy than a, since given that Player III plays R, d would give

Player II a payoff of 4, while a would only give a payoff of 1. This example addresses the

problem that even subgame perfect equilibria could be “unreasonable” in some sense. We

will still need some other refinements.

4 Summary

Belief is an important concept in game theory, which will be discussed further in this course.

An optimal response is based on the player’s belief. We can define a player to be rational

if his chosen strategy is a best response to his belief about what the opponent will do. Try

to understand the reasonableness and the structure of beliefs behind each solution concept.

Let’s see some examples we have discussed above.

• Strictly/weakly dominant strategy equilibrium: Beliefs are not needed here; individual

rationality alone is enough.

• Strict IEDS: Rationality alone is insufficient here; common knowledge of rationality is

needed. That is, I will not play strictly dominated strategies, and I believe you will

not play strictly dominated strategies, and I believe that you believe that I will not

play strictly dominated strategies, and so forth.

• Nash equilibrium: The beliefs are correct in the sense that one’s belief is consistent

with the others’ actual behavior. Do not simply interpret a Nash equilibrium as a non-

deviation state; the reason why there is no deviation is essentially because the beliefs

are correct and realized (and they are optimizing according to such beliefs).
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5 Exercises

Question 7. Two firms are competing in the market for widgets. The output of the two firms

are perfect substitutes, so that the demand curve is given by Q = max {α− p, 0}, where p

is low price. Firm i has constant marginal cost of production 0 < ci < α, and no capacity

constraints. Firms simultaneously announce prices, and the lowest pricing firm has sales

equal to total market demand. The division of the market in the event of a tie (i.e., both

firms announcing the same price) depends upon their costs: if firms have equal costs, then

the market demand is evenly split between the two firms; if firms have different costs, the

lowest cost firm has sales equal to total market demand, and the high cost firm has no sales.

1. Suppose c1 = c2 = c (i.e., the two firms have identical costs). Restricting attention to

pure strategies, prove that there is a unique Nash equilibrium. What is it? What are

firm profits in this equilibrium?

2. Suppose c1 < c2 < α+c1
2

. Still restricting attention to pure strategies, describe the set

of Nash equilibria. Are there any in weakly undominated strategies?

3. We now add an investment stage before the pricing game. At the start of the game, both

firms have identical costs of cH , but before the firms announce prices, firm 1 has the

opportunity to invest in a technology that gives a lower unit cost cL of production (where

cL < cH < α+cL
2

). This technology requires an investment of k > 0. The acquisition

of the technology is public before the pricing game subgame is played. Describe the

extensive form of the game. Describe a subgame perfect equilibrium in which firm 1

acquires the technology (as usual, make clear any assumptions you need to make on the

parameters). Is there a subgame perfect equilibrium in which firm 1 does not acquire

the technology? If not, why not? If there is, compare to the equilibrium in which firm

1 acquires the technology.

Solution. 1. When c1 = c2 = c, the unique pure strategy Nash equilibrium is p1 = p2 = c

(Bertrand Competition model). To prove this, we start with the best response functions

(derived from the utility functions).

π1 (p1, p2) =


max {α− p1, 0} · (p1 − c1) p1 < p2

1
2
max {α− p1, 0} · (p1 − c1) p1 = p2

0 p1 > p2
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p∗1 (p2) =



α+c
2
, p2 >

α+c
2

p2 − ε c < p2 ≤ α+c
2

[p2,+∞] p2 = c

(p2,+∞] p2 < c

Here ε is a positive number that is very close to 0. Similarly, we can write the best

response for firm 2 as a function of firm 1’s price p∗2 (p1). The best responses intersect

at (c, c) on the p1 − p2 plain.

2. Again, first write the best responses (derived from the utility functions).

π1 (p1, p2) =

max {α− p1, 0} · (p1 − c1) p1 ≤ p2

0 p1 > p2

p∗1 (p2) =



α+c1
2

, p2 >
α+c1
2

p2 c1 < p2 ≤ α+c1
2

[p2,+∞] p2 = c1

(p2,+∞] p2 < c1

Similarly,

p∗2 (p1) =


α+c2
2

, p1 >
α+c2
2

p1 − ε c2 < p1 ≤ α+c2
2

[p1,+∞] p1 ≤ c2

The best responses intersect at {(p1, p2) : c1 ≤ p1 = p2 ≤ c2}, which is the set of Nash

equilibria.

None of the equilibria are in weakly undominated strategies. First, p2 < c2 are weakly

dominated strategies by p2 = c2 for firm 2. Then, p2 = c2 is weakly dominated by any

p2 > c2.

3. If firm 1 does not invest, the subsequent subgame is the same as in (1). The Nash

equilibrium in subgame (1) yields a payoff vector (0, 0). If firm 1 invests, the sub-

sequent subgame becomes (2), with the Nash equilibrium yielding a payoff vector

((α− p) (p− cL)− k, 0), where cL ≤ p ≤ cH < α+cL
2

. Therefore (α− p) (p− cL)max =

(α− cH) (cH − cL).
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4. if k < (α− cH) (cH − cL), there exists subgame perfect equilibria, in which firm 1

chooses to invest, and in the second stage {(p1, p2) : p0 ≤ p1 = p2 ≤ cH} where (α− p0) (p0 − cL) =

k.

(a) if k = (α− cH) (cH − cL), there two subgame perfect equilibria: firm 1 invests,

p1 = p2 = cH ; firm 2 does not invest, p1 = p2 = cH ;

(b) if k > (α− cH) (cH − cL), in the subgame perfect equilibria, firm 1 does not invest

and p1 = p2 = cH .

Question 8. Consider the following game G between two players. Player 1 first chooses

between A or B, with A giving payoff of 1 to each player, and B giving a payoff of 0 to player

1 and 3 to player 2. After player 1 has publicly chosen between A and B, the two players

play the following simultaneous move game (with 1 being the row player)

Player 2

L R

Player 1
U 1, 1 0, 0

D 0, 0 3, 3

1. Write down the extensive form of G, and find all pure strategy subgame perfect equi-

libria.

2. Write down the normal form of G.

3. In the above normal form game, what is the result of the iterated deletion of weakly

dominated strategies? Discuss your finding using the concept of forward induction.

Solution. 1. Four pure strategy subgame perfect equilibria:

{AUU,LL} , {BUD,LR} , {ADU,RL} , {ADD,RR}

2. Reduced normal form:

Player 2

LL LR RL RR

Player 1

AU 2, 2 2, 2 1, 1 1, 1

AD 1, 1 1, 1 4, 4 4, 4

BU 1, 4 0, 3 1, 4 0, 3

BD 0, 3 3, 6 0, 3 3, 6
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3. Perform weak IEDS: BU → LL,RL → AU → LR → BD → (AD,RR). Forward

induction: player 2 infers that the only reason player 1 did not play B is that he

intends to play D in the coordination game.
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Game Theory Recitation 2: Repeated Games

Xincheng Qiu∗

Peking University

April 2017

Abstract

In many cases, players interact not just once but repeatedly. Repeated games model

is designed to capture the idea of long-term interaction, where a player takes into

consideration the effect of his current behavior on the other players’ future behavior.

Repeated games can help explain cooperation while rationality predicts defection in

the prisoner’s dilemma.

1 A Motivating Example

In the following Prisoners’ Dilemma game, the unique Nash equilibrium is (D, D). However,

the outcome (C, C) is Pareto dominant, which illustrates tension between mutual cooperation

and self-interests.

C D

C 4, 4 0, 5

D 5, 0 1, 1

An important observation is that people interact more than once under many real-world

circumstances. If the game is repeated for finite times, however, we can argue by back-

ward induction that the equilibrium outcome is still defection (D, D). How can we achieve

cooperation?

∗If you notice any typo, please drop me a line at xincheng.qiu@gmail.com. Comments are also greatly
appreciated.
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1.1 Augmented Prisoners’ Dilemma

Consider an augmented Prisoners’ Dilemma with an additional strategy for each player. Play

this new stage game is twice and add payoffs.

C D A

C 4, 4 0, 5 0, 0

D 5, 0 1, 1 0, 0

A 0, 0 0, 0 3, 3

There exists a subgame perfect equilibrium where (C, C) can be realized on the equi-

librium path: in the first stage, play (C, C); in the second stage, play (A, A) if (C, C) is

realized in the first stage, otherwise play (D, D).

1.2 Infinite Repeated Prisoners’ Dilemma

Assume that the Prisoners’ Dilemma is repeated infinitely. Introduce a discount factor

δ ∈ [0, 1]. Consider the trigger strategy: cooperate in the first stage; cooperate if the

previous stage outcome is (C, C), otherwise defect forever. For a strategy profile to be

subgame perfect, we only need to check subgame after one deviation. We can show that

trigger strategy is a subgame perfect equilibrium when

4 ≥ 5 (1− δ) + 1 · δ ⇔ δ ≥ 1

4

2 Repeated Games

Definition 1. A repeated game is a dynamic game in which the same static game (stage

game) is played at every stage.

In a finite repeated game, it is easy to find subgame perfect equilibria by backward

induction. However, backward induction cannot be applied to infinite horizon games. So,

how do we solve for infinite repeated games?

Theorem 1. A strategy profile is subgame perfect iff there are no profitable one-shot devia-

tions.

Payoffs of G (∞) are

Ui (s) = (1− δ)
∞∑
t=0

δtui

(
at (s)

)
Every strategy profile can be represented by an automaton (W , w0, f, τ), where

2



• W is set of states,

• w0 is initial state,

• f : W → A is output function (decision rule), and

• τ : W × A → W is transition function.

Let Vi (w) be i’s value from being in the state w ∈ W , i.e.,

Vi (w) = (1− δ)ui (f (w)) + δVi (τ (w, f (w)))

Definition 2. Player i has a profitable one-shot deviation if there is some action ai such

that

(1− δ)ui (ai, f−i (w)) + δVi (τ (w, (ai, f−i (w)))) > Vi (w)

Corollary 1. A strategy profile is subgame perfect iff ∀w ∈ W, f (w) is a Nash equilibrium

of the normal form game

gwi (a) = (1− δ)ui (a) + δVi (τ (w, a))

3 Exercises1

Exercise 1. Consider the following stage game.

L C R

U 5, 5 7, 0 3, x

M 0, 0 4, 1 0, 0

D 0, 0 0, 0 0, 0

1. Suppose x = 6 and the game is repeated infinitely with perfect monitoring. Both

players have a discount factor δ. Describe a strategy profile such that the two players

play (U, L) in each period on the equilibrium path. How large δ needs to be so that

the strategy profile you have just defined is a subgame perfect equilibrium?

2. Suppose x = 0 and consider the following behavior in the infinitely repeated game

with perfect monitoring: Play MC in period t = 0. Play MC as long as no one has

1The questions are designed for Problem Set 2 by Prof. Xi Weng at Guanghua School of Management,
Peking University.
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deviated in the previous two periods. If any player deviates, play DR for two periods

and then return to MC. For what values of the common discount factor δ is this profile

a subgame perfect equilibrium of the infinitely repeated game?

3. Suppose x = 0 and now the payoff from the action profile DL is (0, 1). How does this

change to the stage game affect the range of discount factors for which the profile in

(2) is a subgame perfect equilibrium of the infinitely repeated game?

Solution. 1. Player 1 has no incentive to deviate from (U, L) but player 2 has an incentive

to deviate to R. To avoid player 2’s deviation, player 1 has to punish player 2 by playing

another strategy if he deviates. Note that U is the strictly dominant strategy for player 1,

so the subgame perfect equilibrium cannot be supported by any trigger strategy. Consider

the strategy where defection can be forgiven: At period 0, they cooperate, i.e., play (U, L);

If cooperation is not achieved in period t − 1, the punishment (D, R) is imposed in period

t; if the punishment has not been carried out, they continue to play (D, R); they revive

cooperation until the punishment has been implemented in the preceding period.

According to one deviation principle,

5 ≥ 6 (1− δ) + 0 + 5δ2 ⇔ (5δ − 1) (δ − 1) ≤ 0 ⇒ δ ≥ 1

5

0 + 5δ ≥ 3 (1− δ) + 0 + 5δ2 ⇔ (5δ − 3) (δ − 1) ≤ 0 ⇒ δ ≥ 3

5

For this strategy to be a SPE, we need δ ≥ 3
5
.

An equivalent and illustrating way to derive the conditions is to exploit automata.

..wUL.start . wDR.

¬UL
.

UL

.

DR

.

¬DR

Vi (wUL) = 5 (1− δ) + δVi (wUL)

Vi (wDR) = 0 + δVi (wUL)

So we have Vi (wUL) = 5, Vi (wDR) = 5δ. The normal form associated with wUL is
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L C R

U 5, 5 7 (1− δ) + 5δ2, 5δ2 3 (1− δ) + 5δ2, 6 (1− δ) + 5δ2

M 5δ2, 5δ2 4 (1− δ) + 5δ2, (1− δ) + 5δ2 5δ2, 5δ2

D 5δ2, 5δ2 5δ2, 5δ2 5δ2, 5δ2

Note that 0 ≤ δ ≤ 1, so for UL to be a NE, we must have 5 ≥ 6 (1− δ) + 5δ2, i.e., δ ≥ 1
5
.

The normal form associated with wDR is

L C R

U 5 (1− δ) + 5δ2, 5 (1− δ) + 5δ2 7 (1− δ) + 5δ2, 5δ2 3 (1− δ) + 5δ2, 6 (1− δ) + 5δ2

M 5δ2, 5δ2 4 (1− δ) + 5δ2, (1− δ) + 5δ2 5δ2, 5δ2

D 5δ2, 5δ2 5δ2, 5δ2 5δ, 5δ

For DR to be a NE, we must have 5δ ≥ 3 (1− δ) + 5δ2, i.e., δ ≥ 3
5
.

Therefore, for such strategy to be a SPE, we need to have δ ≥ 3
5
. Other potential

strategies are left for you to have a brain storm.

2. The strategy profile can be represented by the following automaton:

..wMC.start . wDR1. wDR2. ¬MC.

MC

.

DR

.

¬DR

.

DR

.

¬DR


Vi (wMC) = (1− δ)ui (MC) + δVi (wMC)

Vi (wDR1) = 0 + δVi (wDR2)

Vi (wDR2) = 0 + δVi (wMC)

It solves V1 (wMC) = 4, V1 (wDR1) = 4δ2, V1 (wDR2) = 4δ and V2 (wMC) = 1, V2 (wDR1) =

δ2, V2 (wDR2) = δ. The normal form associated with wMC is2

L C R

U / 7 (1− δ) + 4δ3, δ3 /

M 4δ3, δ3 4, 1 4δ3, δ3

D / 4δ3, δ3 /

2It suffices to check unilateral deviation.
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Note that 0 ≤ δ ≤ 1, so for MC to be a NE, we should have

4 ≥ 7 (1− δ) + 4δ3 ⇔ (δ − 1) (2δ + 3) (2δ − 1) ≤ 0 ⇒ δ ≥ 1

2

The normal form associated with wDR1 is

L C R

U / / 3 (1− δ) + 4δ3, δ3

M / / 4δ3, δ3

D 4δ3, δ3 4δ3, δ3 4δ2, δ2

For DR to be a NE, we should have

4δ2 ≥ 3 (1− δ) + 4δ3 ⇔
(
4δ2 − 3

)
(δ − 1) ≤ 0 ⇒ δ ≥

√
3

2

The normal form associated with wDR2 is

L C R

U / / 3 (1− δ) + 4δ3, δ3

M / / 4δ3, δ3

D 4δ3, δ3 4δ3, δ3 4δ, δ

For DR to be a NE, we should have

4δ ≥ 3 (1− δ) + 4δ3 ⇔ (δ − 1) (2δ + 3) (2δ − 1) ≤ 0 ⇒ δ ≥ 1

2

Therefore, this strategy profile is a SPE when δ ≥
√
3
2
.

3. If the payoff from DL changes to (0, 1), the payoff from DL in the above normal forms

becomes (4δ3, 1− δ + δ3). Now we need some additional non-deviation conditionsδ2 ≥ 1− δ + δ3

δ ≥ 1− δ + δ3

Note that δ ≥ δ2 for 0 ≤ δ ≤ 1. We only need to solve for δ2 ≥ 1 − δ + δ3. So

(δ − 1)2 (δ + 1) ≤ 0, i.e., δ = 1.

Exercise 2. Consider the following simultaneous move game

L M R

U 1, -1 0, 0 10, 4

M 0, 0 2, 1 7, 5

D 8, 9 5, 10 0, 0
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1. Find all the Nash Equilibria (in both pure strategies and mixed strategies) of this

game.

2. Suppose the game is repeated twice without discounting. Construct a subgame perfect

equilibrium such that player 1 plays M and player 2 plays R in the first period.

3. Now suppose the game is repeated infinitely. Both players have a discount factor δ.

Define a strategy profile such that the two players play (D, L) in each period on the

equilibrium path. How large δ needs to be so that the strategy profile you have just

defined is a subgame perfect equilibrium?

4. Construct a strategy profile such that such that the players are alternating between (D,

L) and (M, R) on the equilibrium path. How large δ needs to be so that the strategy

profile you have just defined is a subgame perfect equilibrium?

Solution. 1. Pure Strategy Nash Equilibria: (U, R) and (D, M). Note that for player B, L

is strictly dominated by M. In a NE, player B will never play L with a positive probability.

Assume player B’s strategy in the NE is (0, p, 1− p). Player A’s expected payoff of playing

each strategy is then

EUA (U) = 10 (1− p)

EUA (M) = 2p+ 7 (1− p)

EUA (D) = 5p

i. if 0 < p < 3
5
, EUA (U) > EUA (M) > EUA (D). Player A will only play U.

ii. if p = 3
5
, EUA (U) = EUA (M) > EUA (D). Player A will mix between U and M. Note

that when D is eliminated, player B will choose R.

iii. if 3
5
< p < 7

10
, EUA (M) > max {EUA (U) , EUA (D)}. Player A will choose to play

M.

iv. if p = 7
10
, EUA (M) = EUA (D) > EUA (U).Player A will mix between M and D.

Assume A’s strategy is (0, q, 1− q). According to Indifference Principle,

q + 10 (1− q) = 5q ⇒ q =
5

7

v. if p > 7
10
, EUA (D) > EUA (M) > EUA (U). Player A will choose to play D.

Therefore, there exists a unique mixed strategy NE
((
0, 5

7
, 2
7

)
,
(
0, 7

10
, 3
10

))
.
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2. Note that player B has no incentive to deviate from (M, R) but player A has incentive

to deviate. So we should design a strategy profile such that player A will get punished in

the second period in he deviates in the first period. In a finite repeated game, for a strategy

profile to be a SPE, they must play a NE in the final stage. Therefore, we can construct a

“stick and carrot” strategy: play (M, R) in the first stage; if player 1 deviates to (U, R) in

the first stage, play (D, M) in the second stage; otherwise, play (U, R) in the second stage.

We can prove that it is indeed a SPE by backward induction.

3. Consider the trigger strategy: initially play (D, L); if any deviation is observed, play

(U, R) forever. The trigger strategy can be represented by the automaton:

..wDL.start . wUR. ¬DL.

DL

.

ALL

Vi (wDL) = (1− δ)ui (DL) + δVi (wDL)

Vi (wUR) = (1− δ)ui (UR) + δVi (wUR)

So we have V1 (wDL) = 8, V1 (wUR) = 10 and V2 (wDL) = 9, V2 (wUR) = 4. The normal

form associated with wDL is

L C R

U (1− δ) + 10δ, − (1− δ) + 4δ 10δ, 4δ 10, 4

M 10δ, 4δ 2 (1− δ) + 10δ, (1− δ) + 4δ 7 (1− δ) + 10δ, 5 (1− δ) + 4δ

D 8, 9 5 (1− δ) + 10δ, 10 (1− δ) + 4δ 10δ, 4δ

Note that 0 ≤ δ ≤ 1, so for DL to be a NE, we must have8 ≥ (1− δ) + 10δ ⇒ δ ≤ 7
9

9 ≥ 10 (1− δ) + 4δ ⇒ δ ≥ 1
6

The normal form associated with wUR is

L C R

U (1− δ) + 10δ, − (1− δ) + 4δ 10δ, 4δ 10, 4

M / / 7 (1− δ) + 10δ, 5 (1− δ) + 4δ

D / / 10δ, 4δ
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Incentive constraints at wUR are:10 ≥ 7 (1− δ) + 10δ ⇒ δ ≤ 1

4 ≥ − (1− δ) + 4δ ⇒ δ ≤ 1

Therefore, for the trigger strategy to be a SPE, we need to have 1
6
≤ δ ≤ 7

9
. Other

potential strategies are left for you to have a brain storm.

4. Consider the modified trigger strategy: alternate between (D, L) and (M, R); if (D,

L) is not realized when it should be, play (U, R) forever; similarly, if (M, R) is not realized

when it should be, play (D, M) forever. This strategy can be represented by the automaton:

..wDL.start . wMR.

wUR

.

wDM

.

DL

.

¬DL

.

MR

.

¬MR

.

ALL

.

ALL



Vi (wDL) = (1− δ)ui (DL) + δVi (wMR)

Vi (wMR) = (1− δ)ui (MR) + δVi (wDL)

Vi (wUR) = (1− δ)ui (UR) + δVi (wUR)

Vi (wDM) = (1− δ)ui (DM) + δVi (wDM)

It solves V1 (wDL) =
8+7δ
1+δ

, V1 (wMR) =
7+8δ
1+δ

, V1 (wUR) = 10, V1 (wDM) = 5 and V2 (wDL) =
9+5δ
1+δ

, V1 (wMR) =
5+9δ
1+δ

, V1 (wUR) = 4, V1 (wDM) = 10. (We skip the associated normal forms

at each state.) The relevant incentive constraints are:

8+7δ
1+δ

≥ (1− δ) + 10δ ⇔ 9δ2 + 3δ − 7 ≤ 0 ⇒ δ ≤ −3+
√
261

18

9+5δ
1+δ

≥ 10 (1− δ) + 4δ ⇔ (2δ + 1) (3δ − 1) ≥ 0 ⇒ δ ≥ 1
3

7+8δ
1+δ

≥ 10 (1− δ) + 5δ ⇔ 5δ2 + 3δ − 3 ≥ 0 ⇒ δ ≥ −3+
√
69

10

5+9δ
1+δ

≥ (1− δ) + 10δ ⇔ 9δ2 + δ − 4 ≤ 0 ⇒ δ ≤ −1+
√
145

18

Therefore, δ needs to be
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−3 +
√
69

10
≤ δ ≤ −1 +

√
145

18

In fact, we can state a similar strategy as: alternate between (D, L) and (M, R); only

if player B deviates from (D, L), play (U, R) forever, but if player A deviates from (D, L),

still go to (M, R); only if player A deviates from (M, R), play (D, M) forever, but if player

B deviates from (M, R), still go to (D, L). In this way, player A has no incentive to deviate

from (D, L) and player B has no incentive to deviate from (M, R). Then δ only needs to be

δ ≥ −3+
√
69

10
. In a word, the range of δ depends on how you define the strategy profile.

Exercise 3. Consider the following simultaneous move game.

L R

U 2, 2 x, 0

D 0, 5 1, 1

Let δ denote the common discount factor for both players and consider the strategy

profile that induces the outcome path DL,UR,DL,UR, ..., and that, after any unilateral

deviation by the row player specifies the outcome path DL,UR,DL,UR, ..., and after any

unilateral deviation by the column player, specifies the outcome path UR,DL,UR,DL, ...

(simultaneous deviations are ignored. i.e., are treated as if neither player had deviated).

1. Suppose x = 5. For what values of δ is this strategy profile subgame perfect?

2. Suppose now x = 4. How does this change your answer? Compare your answer with

(1) and explain.

3. Suppose x = 5 again. Assume that at the beginning of each period, a coin is tossed.

Each player can observe whether it is head or tail, and then takes the action. With

probability 1
2
, it is head and DL is played; with probability 1

2
, it is a tail and UR is

played. If any player deviates, then the outcome path is the same as the one specified

at the beginning of the question. For what values of δ is this strategy profile subgame

perfect? Compare your answer with (1) and explain.

Solution. Present the strategy by the automaton below

..wDL.start . wUR.

DL,DR

.

UL

.

UR,DR

.

UL

10



Vi (wDL) = (1− δ)ui (DL) + δVi (wUR)

Vi (wUR) = (1− δ)ui (UR) + δVi (wDL)

It solves V1 (wDL) = xδ
1+δ

, V1 (wUR) = x
1+δ

and V2 (wDL) = 5
1+δ

, V2 (wUR) = 5δ
1+δ

. The

normal form associated with wDL is

L R

U 2 (1− δ) + δV1 (wDL), 2 (1− δ) + δV2 (wDL) /

D δV1 (wUR), 5 (1− δ) + δV2 (wUR) (1− δ) + δV1 (wUR), (1− δ) + δV2 (wUR)

Note that 0 ≤ δ ≤ 1, so for DL to be a NE, we must have

δV1 (wUR) ≥ 2 (1− δ) + δV1 (wDL)

The normal form associated with wUR is

L R

U 2 (1− δ) + δV1 (wUR), 2 (1− δ) + δV2 (wUR) x (1− δ) + δV1 (wDL), δV2 (wDL)

D / (1− δ) + δV1 (wDL), (1− δ) + δV2 (wDL)

For UR to be a NE, we must have

δV2 (wDL) ≥ 2 (1− δ) + δV2 (wUR)

The non-deviation conditions areδ x
1+δ

≥ 2 (1− δ) + δ xδ
1+δ

δ 5
1+δ

≥ 2 (1− δ) + δ 5δ
1+δ

1. Suppose x = 5. Then we have δ 5
1+δ

≥ 2 (1− δ) + δ 5δ
1+δ

, i.e., (3δ − 2) (δ − 1) ≤ 0, so

δ ≥ 2
3
.

2. Suppose x = 4. Then an additional condition is δ 4
1+δ

≥ 2 (1− δ)+δ 4δ
1+δ

, i.e., (δ − 1)2 ≤
0, so δ = 1. When x decreases from 5 to 4, player A earns less from not deviating at

the state DL. That is, player A has a stronger incentive to deviate to U if x = 4. To

avoid deviation, we need a larger discount factor to guarantee that player A cares more

about future payoffs.

3. The non-deviation conditions are

11



0 + 5
2
δ ≥ 2 (1− δ) + δV1 (wDL)

0 + 5
2
δ ≥ 2 (1− δ) + δV2 (wUR)

Since V1 (wDL) = V2 (wUR) =
5δ
1+δ

, so we have

5

2
δ ≥ 2 (1− δ) +

5δ2

1 + δ
⇔ (δ − 1) (δ − 4) ≤ 0 ⇒ δ ≥ 1

But δ ∈ (0, 1).

4 Folk Theorem

From the above exercises, we can see that there can be many SPEs in infinitely repeated

games. Can we always guarantee the existence of cooperation?

Theorem 2. The Folk Theorem (Friedman 1971)

When the discount factor is sufficiently large, any individual rational payoff vector can

be supported in a subgame perfect equilibrium in an infinitely repeated game.
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Game Theory Recitation 3: Incomplete Information

Xincheng Qiu∗

Peking University

May 2017

Abstract

Common knowledge is sometimes too strong an assumption. Instead, it is often the

case that one player knows something (i.e., his private information) while others don’t,

and this private information will affect the outcome of the game. Harsanyi introduced

Bayesian games with “types” to model such incomplete information, and “type” enters

into the payoff functions.

1 Static Bayesian Games

1.1 Set Up

• n players: i = 1, 2, . . . , n.

• Nature chooses a type profile t = (t1, . . . , tn) where ti ∈ Ti. Each player i is informed

of his own type ti but not others’ types t−i.

• However, each player i has belief about the distribution of others’ types p (t−i) (discrete

probability) or f (t−i) (continuous density).

• Players simultaneously choose actions. Note the difference between actions ai ∈ Ai

and strategies si ∈ Si. A player’s (pure) strategy is a function si (ti) from types to

actions, i.e., si : Ti → Ai.

• Payoffs depend on both strategies and types ui (s1, s2, . . . , sn; t1, t2, . . . , tn).

∗If you notice any typo, please drop me a line at xincheng.qiu@gmail.com. Comments are also greatly
appreciated. The questions are designed for Problem Set 3 by Prof. Xi Weng at Guanghua School of
Management, Peking University.
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Note 1. Imperfect Information v.s. Incomplete Information.

• Imperfect Information: There exists some information sets that are not singletons. Put

it differently, some player does not know which choices were made previously by other

players when it is his turn to move.

• Incomplete Information: Player i’s type ti describe some information that is not com-

mon knowledge and only player i knows. In other words, some player does not know

exactly which game he is playing (it depends on types).

1.2 Solution Concept: Bayesian Nash Equilibrium

Definition 1. The strategy profile (s∗1 (t1) , . . . , s
∗
n (tn)) forms a Bayesian Nash equilibrium

if for each player i and each of i’s type ti ∈ Ti, and for ∀si ∈ Si

Et−i

[
ui

(
s∗i (ti) , s

∗
−i (t−i) , ti, t−i

)
| ti
]
≥ Et−i

[
ui

(
si, s

∗
−i (t−i) , ti, t−i

)
| ti
]

where the expectation over t−i is taken with respect to the subjective belief p (ti). That

is, s∗i (ti) solves

max
si∈Si

Et−i

[
ui

(
si, s

∗
−i (t−i) , ti, t−i

)
| ti
]

Remark 1. In a Bayesian Nash Equilibrium, each player chooses the best response to maxi-

mize his expected payoff conditional on his private information and corresponding beliefs1.

2 Applications

Type

Discrete Continuous

Strategy
Discrete Payoff Matrix Cutoff Point

Continuous Mixed Strategies Linear Strategies

2.1 Continuous Types and Continuous Strategies: Linear Strate-

gies

Question 1. Consider a double auction where a seller is selling an indivisible object to a

buyer. Let vs ∼ U [0, 1] denote the seller’s valuation of the object and vb ∼ U [0, 1] denote

the buyer’s valuation. vs and vb are independent. Seller and buyer simultaneously propose

1In case you forget about expectations, please see the appendix.
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prices ps ∈ [0, 1] and pb ∈ [0, 1]. Trade occurs at price γpb + (1− γ) ps if pb ≥ ps; otherwise

no trade. γ ∈ [0, 1] is a fixed parameter.

1. Solve the Bayesian Nash equilibrium in linear strategies.

2. Calculate the buyer’s expected payoffs when γ = 0 and γ = 1. Which γ does the buyer

prefer, γ = 0 or γ = 1? Explain your result.

3. Calculate the expected probability that trade occurs. Which γ yields the highest expected

probability of trading? Explain your result.

Solution. 1. Seller’s strategy: ps : [0, 1] → [0, 1]; Buyer’s strategy: pb : [0, 1] → [0, 1].

Consider linear strategy: ps = αs + βsvs and pb = αb + βbvb. For the strategy profile (p∗s, p
∗
b)

to be a BNE, p∗s maximizes

Evb [Us (ps, p
∗
b , vs) | vs] =

∫ 1

ps−αb
βb

[γ (αb + βbvb) + (1− γ) ps − vs] dvb

According to Leibniz integral rule2, the F.O.C. is

−
[
γ

(
αb + βb

ps − αb

βb

)
+ (1− γ) ps − vs

]
1

βb

+

∫ 1

ps−αb
βb

(1− γ) dvb = 0

which yields

p∗s =
1

2− γ
[(1− γ) (αb + βb) + vs] (1)

Similarly, p∗b maximizes

Evs [Ub (p
∗
s, pb, vb) | vb] =

∫ pb−αs
βs

0

[vb − γpb − (1− γ) (αs + βsvs)] dvs

According to Leibniz integral rule, the F.O.C. is

[
vb − γpb − (1− γ)

(
αs + βs

pb − αs

βs

)]
1

βs

+

∫ pb−αs
βs

0

−γdvs = 0

which yields

2If you are not familiar with Leibniz integral rule, please refer to the appendix.
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p∗b =
1

1 + γ
(γαs + vb) (2)

Combining equation 1 and equation 2, we have

αs =
1

2−γ
(1− γ) (αb + βb)

βs =
1

2−γ

αb =
1

1+γ
γαs

βb =
1

1+γ

⇒



αs =
1−γ
2

βs =
1

2−γ

αb =
γ(1−γ)
2(1+γ)

βb =
1

1+γ

The BNE in linear strategies is p∗s =
1−γ
2

+ 1
2−γ

vs and p∗b =
γ(1−γ)
2(1+γ)

+ 1
1+γ

vb.

2. When γ = 0, p∗s =
1
2
+ 1

2
vs and p∗b = vb.

Evs [Ub (p
∗
s, p

∗
b , vb) | vb] =

∫ 2vb−1

0

[
vb −

(
1

2
+

1

2
vs

)]
dvs

=

(
vb −

1

2

)2

Note that it holds only when 2vb − 1 ≥ 0, i.e., vb ≥ 1
2
. Actually, if vb <

1
2
, pb < ps and

the trade never occurs. So

Evs [Ub | vb] =


(
vb − 1

2

)2
, 1

2
≤ vb ≤ 1

0 0 ≤ vb <
1
2

When γ = 1, p∗s = vs and p∗b =
1
2
vb.

Evs [Ub (p
∗
s, p

∗
b , vb) | vb] =

∫ 1
2
vb

0

[
vb −

1

2
vb

]
dvs

=
1

4
v2b

The ex ante expected payoff when γ = 0 is EUb =
∫ 1

1
2

(
vb − 1

2

)2
dvb = 1

24
. The ex-ante

expected payoff when γ = 1 is EUb =
∫ 1

0
1
4
v2bdvb =

1
12
. So the buyer prefers γ = 1.

3. The expected probability that trade occurs is
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Pr (pb ≥ ps) =

∫∫
pb≥ps

dvsdvb

=
1

8
(1 + γ) (2− γ)

F.O.C. yields γ∗ = 1
2
.

Question 2. Consider a first-price sealed-bid auction of an object between two risk-neutral

bidders. Each bidder i (for i = 1, 2) simultaneously submits a bid bi ≥ 0. The bidder

who submits the highest bid receives the object and pays his bid; both bidders win with equal

probability in case they submit the same bid. Before the auction takes place, each bidder i

privately observes the realization of a random variable ti that is drawn independently from a

uniform distribution over the interval [0, 1].

1. Suppose first that the valuation of the object to bidder i is equal to ti + 0.5. Therefore,

the payoff of bidder i is ti + 0.5 − bi if bi > bj; is 1
2
(ti + 0.5− bi) if bi = bj; is 0 if

bi < bj. Derive the symmetric linear Bayesian Nash equilibrium for this game (i.e.,

each bidder uses an equilibrium strategy of the form bi = αti + β).

2. Now suppose the actual valuation of the object to bidder i is equal to ti + tj (j ̸= i).

Derive the symmetric linear Bayesian Nash equilibrium for this game (i.e., each bidder

uses an equilibrium strategy of the form bi = αti + β).

3. Compare your answers in 1 and 2. Interpret your results.

Solution. 1. Consider the symmetric linear BNE b∗i = αti + β. b∗i maximizes player i’s

conditional expected payoff

Etj

[
Ui

(
bi, b

∗
j , ti, tj

)
| ti
]
=

∫ bi−β

α

0

(ti + 0.5− bi) dtj

= (ti + 0.5− bi)
bi − β

α

F.O.C. implies that b∗i =
1
2
t+ 1

2
β + 1

4
. That is, α = 1

2
and β = 1

2
.

2. Now the payoff of bidder i becomes

Ui (bi, bj, ti, tj) =


ti + tj − bi, bi > bj

1
2
(ti + tj − bi) , bi = bj

0, bi < bj
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Again consider the symmetric linear BNE b∗i = αti+β. b∗i maximizes player i’s conditional

expected payoff

Etj

[
Ui

(
bi, b

∗
j , ti, tj

)
| ti
]
=

∫ bi−β

α

0

(ti + tj − bi) dtj

According to Leibniz integral rule, the F.O.C. is

(
ti +

bi − β

α
− bi

)
1

α
−
∫ bi−β

α

0

dtj = 0

which implies

b∗i =
1

2α− 1
[αti + (α− 1) β]

Therefore, α = 1 and β = 0.

3. Notice that b
(1)
i = 1

2
ti +

1
2
and b

(2)
i = ti, i.e., b

(1)
i > b

(2)
i for ∀t ∈ [0, 1).

2.2 Discrete Types and Continuous Strategies: Mixed Strategies

Question 3. Fully characterize the symmetric BNE in the seat-taking example when vi =

1− ϵ with probability 1
2
, = 1 + ϵ with probability 1

2
.

Solution. The payoff function of the seat-taking game is

Ui (vi, si, sj) =


vi − si si > sj

1
2
(vi − si) si = sj

−si si < sj

We can first prove that there does not exist a pure strategy BNE by contradiction.

Consider the symmetric mixed strategy BNE fL (si) when observing vi = 1 − ϵ and fH (si)

when observing vi = 1 + ϵ. Denote the cumulative distribution functions by FL and FH ,

respectively. We assume they have support [0, s] and [s, s]. Without loss of generality, player

1 is indifferent among the support, i.e., those strategies he plays with a positive density.

1. If v1 = 1 − ϵ. By indifference principle, each s ∈ [0, s] generates the same expected

payoff

E [U1 (v1, s, f
∗
2 ) | vL] =

1

2

[
−s+

∫ s

0

(1− ϵ) dFL

]
+

1

2
[−s]
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which does not vary as s changes. So the derivative with respect to s should be zero.

Then fL (s) =
2

1−ϵ
.

2. If v1 = 1 + ϵ. Similarly, each s ∈ [s, s] generates the same expected payoff

E [U1 (v1, s, f
∗
2 ) | vH ] =

1

2

[
−s+

∫ s

s

(1 + ϵ) dFH

]
+

1

2
[1 + ϵ− s]

which does not vary as s changes. So the derivative with respect to s should be zero.

Then fH (s) = 2
1+ϵ

.

Note that FL (s) =
∫ s

0
fL (s) =

2
1−ϵ

s = 1, so s = 1−ϵ
2
. And FH (s) =

∫ s

s
fH (s) = 2

1+ϵ
(s− s) =

1, so s = 1.

Therefore, the symmetric BNE is f ∗
1 = f ∗

2 = (f ∗
L, f

∗
H), where

f ∗
L (s) =

2

1− ϵ
, s ∈

[
0,

1− ϵ

2

]

f ∗
H (s) =

2

1 + ϵ
, s ∈

[
1− ϵ

2
, 1

]

2.3 Continuous Types and Discrete Strategies: Cutoff Point

Question 4. Consider the game depicted in the following table with two players, 1 and

2. The players simultaneously make their decisions. The states of the world are given by

(x, y) ∈ (0, 1)2. Player 1 is told the first coordinate x of the state of world, and Player 2 is

told the second coordinate y of the state of world. Each player, after learning his type, knows

his payoff function, but does not know the payoff function of the other player.

2

1

L R

U x, 0 0, y

D 0, 1 1, 0

For the first two questions, suppose that the common prior is such that both x and y are

uniformly distributed on the interval (0, 1), and the draws of x and y are independent.

1. Show that there does not exist a Bayesian Nash equilibrium in which both players, of

each type, use a completely mixed action.

2. Construct a Bayesian Nash equilibrium in which both players use a cutoff strategy (i.e.

Player 1 chooses U if x ≥ x̄ and Player 2 chooses R if y ≥ ȳ).
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3. Now assume that given the value z that is told to a player, that player believes that the

value told to the other player is uniformly distributed over the interval (0, z). In other

words, Player 1 believes that x > y and Player 2 believes y > x. Construct a Bayesian

Nash equilibrium in which both players, of each type, use a completely mixed action.

Briefly explain why the results in (1) and (3) are different.

Solution. 1. We can prove it by contradiction. Assume that player 1 chooses U with

probability p1 (x) and D with probability 1 − p1 (x); player 2 chooses L with probability

p2 (y) and R with probability 1− p2 (y). Given player 2’s strategy,

Ey [U1 (U) | x] =
∫ 1

0

xp2 (y) dy

Ey [U1 (D) | x] =
∫ 1

0

[1− p2 (y)] dy

For player 1 to play mixed strategy, Ey [U1 (U) | x] = Ey [U1 (D) | x], which implies∫ 1

0

p2 (y) dy =
1

1 + x
(3)

Similarly, given player 1’s strategy,

Ex [U2 (L) | y] =
∫ 1

0

1− p1 (x) dx

Ex [U2 (R) | y] =
∫ 1

0

yp1 (x) dx

For player 2 to play mixed strategy, Ex [U2 (L) | y] = Ex [U2 (R) | y], which implies∫ 1

0

p1 (x) dx =
1

1 + y
(4)

However, it is impossible for equation 3 and equation 4 to always hold.

2. Consider a profile of cutoff strategies

s1 (x) =

U x ≥ x̄

D x < x̄

s2 (y) =

R y ≥ ȳ

L y < ȳ

8



From the property of the cutoff point, we know that player 1 is indifferent between U

and D when x = x̄.

Ey [U1 (U) | x = x̄] =

∫ ȳ

0

x̄dy = x̄ȳ

Ey [U1 (D) | x = x̄] =

∫ 1

ȳ

1dy = 1− ȳ

Therefore

x̄ȳ = 1− ȳ (5)

similarly, player 2 is indifferent between L and R when y = ȳ.

Ex [U2 (L) | y = ȳ] =

∫ x̄

0

1dx = x̄

Ex [U2 (R) | y = ȳ] =

∫ 1

x̄

ȳdx = ȳ (1− x̄)

Therefore

x̄ = ȳ (1− x̄) (6)

Combing equation 5 and equation 6 solvesx̄ =
√
2− 1

ȳ =
√
2
2

3. As in (1), assume that player 1 chooses U with probability p1 (x) and D with probability

1− p1 (x); player 2 chooses L with probability p2 (y) and R with probability 1− p2 (y). For

player 1 to play the mixed strategy,

Ey [U1 (U) | x] =
∫ x

0

xp2 (y)
1

x
dy = Ey [U1 (D) | x] =

∫ x

0

[1− p2 (y)]
1

x
dy

So we have ∫ x

0

p2 (y) dy =
x

1 + x
(7)

Similarly, for player 2 to play the mixed strategy,
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Ex [U2 (L) | y] =
∫ y

0

[1− p1 (x)]
1

y
dx = Ex [U2 (R) | y] =

∫ y

0

yp1 (x)
1

y
dx

So we have ∫ y

0

p1 (x) dx =
y

1 + y
(8)

Equation 7 and 8 can be rewritten as∫ y

0

p2 (t) dt =
y

1 + y∫ x

0

p1 (t) dt =
x

1 + x

Taking derivatives3, we can solve forp1 (x) =
(

x
1+x

)′
= 1

(1+x)2

p2 (y) =
(

y
1+y

)′
= 1

(1+y)2

2.4 Discrete Types and Discrete Strategies: Payoff Matrix

Example 1. Player 1 knows which of the following two games is played and Player 2 knows

only that each game is played with equal probabilities. We can model such incomplete

information as player 1’s type t1 = 1, 2. Player 1 knows exactly his own type but player 2

only knows Pr (t1 = 1) = Pr (t1 = 2) = 1
2
.

t1 = 1 X Y

a 2, 2 4, 0

b 0, 4 3, 3

t1 = 2 X Y

x 0, 0 0, 0

y 0, 0 1, 1

Player 1’s strategy set: {ax, ay, bx, by} and Player 2’s strategy set {X, Y}. From an ex

ante point of view, we can present the above game in a normal form:

X Y

ax 1, 1 2, 0

ay 1, 1 5
2
, 1
2

bx 0, 2 3
2
, 3
2

by 0, 2 2, 2

In the interim, this game can be represented as:

3The second fundamental theorem of calculus.
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t1 = 1 X Y

ax 2, 1 4, 0

ay 2, 1 4, 1
2

bx 0, 2 3, 3
2

by 0, 2 3, 2

t1 = 2 X Y

ax 0, 1 0, 0

ay 0, 1 1, 1
2

bx 0, 2 0, 3
2

by 0, 2 1, 2

It can be verified that (ax, X) and (ay, X) are two BNE.
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A Maths Appendix

A.1 Expectation

The expectation of a discrete random variable: E [X] =
∑

i xipi

The expectation of a continuous random variable:

E [X] =

∫ ∞

−∞
xf (x) dx =

∫ ∞

−∞
xdF (x)

where f (x) is the probability density function and F (x) is the cumulative distribution

function. The expectation of a function of x, U (x) is

E [U (x)] =

∫ ∞

−∞
U (x) f (x) dx

Note 2. Don’t forget f (x)! You may ignore this since in most of the exercises above, we

simply assume a uniform distribution on [0, 1] whose density f (x) = 1.

A.2 Leibniz Integral Rule

Theorem 1. Leibniz integral rule.

d

dx

(∫ b(x)

a(x)

f (x, t) dt

)
= f (x, b (x)) · d

dx
b (x)− f (x, a (x)) · d

dx
a (x) +

∫ b(x)

a(x)

∂

∂x
f (x, t) dt

A.3 The Second Fundamental Theorem of Calculus

Theorem 2. The second fundamental theorem of calculus.

d

dx

(∫ x

a

f (t) dt

)
= f (x)
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Game Theory Recitation 4: Dynamic Games of

Incomplete Information

Xincheng Qiu∗

Peking University

June 2017

1 Equilibrium Concepts

1.1 Review

Nash Equilibrium is the most fundamental solution concept. It requires

1. every player chooses the best response given his belief about what others will do;

2. every player’s belief is consistent with others’ strategies.

SPE, PBE are refinements of NE with additional “reasonable” requirements. What is a

“reasonable” equilibrium concept in dynamic games with incomplete information? Two re-

quirements are imposed for PBE:

1. Sequential Rationality : The choices specified by b should be optimal at every informa-

tion set given the beliefs specified by µ.

2. Bayesian updating : The beliefs specified by µ should be consistent with the strategy

profile b.

Definition 1. Beliefs.

A system of beliefs µ in a finite extensive form game is a specification of a probability

distribution over the decision nodes in every information set.

∗If you notice any typo, please drop me a line at xincheng.qiu@gmail.com. Comments are also greatly
appreciated.
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Definition 2. Sequential Rationality.

A behavior strategy b̂i in a finite extensive form game is sequentially rational given a

system of beliefs µ, if

Eµ,(b̂i,b̂−i) [ui | h] ≥ Eµ,(bi,b̂−i) [ui | h]

for every information set h and for all bi. We say that b̂ is sequentially rational if, for

every Player i, b̂i is sequentially rational.

Definition 3. Bayesian updating (on the path of play).

(b, µ) satisfies Bayesian updating if, for every information set h with P b (h) > 0 and node

t ∈ h,

µ (t) =
P b (t)

P b (h)

1.2 Weak PBE

Definition 4. Weak Perfect Bayesian Equilibrium.

A strategy profile b of a finite extensive form game is a weak perfect Bayesian equilibrium

if there exists a system of beliefs µ such that

1. b is sequentially rational given µ.

2. The belief on the path of play is derived from Bayes’ rule.

Remark 1.

• A weak PBE consists of a pair of strategies and beliefs, (b, µ).

• Weak Perfect Bayesian Equilibrium = Sequential Rationality (at every information

set)+ Bayesian updating (on the path of play)

• The belief off the path of play can be defined arbitrarily as long as sequential rationality

is satisfied.

• Sequential rationality implies that no player chooses strictly dominated actions at any

information set.

• Every weak PBE is a NE. But it is possible that a weak PBE is not a SPE.
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1.3 Further Refinements

There are two kinds of information sets:

• Reached information sets: information sets on the path of play that are reached with

positive probability;

• Unreached information sets: information sets off the path of play that are reached with

zero probability.

Bayesian updating applies to information sets on the path of play, but cannot apply to

information sets off the path of play, since Bayes’ rule won’t work if the denominator is zero.

So far we have imposed no restriction on beliefs at unreached information sets in the concept

of weak PBE. Now we want to extend the requirement of Bayesian updating that would

also reasonably apply to unreached information sets. How should a rational player revise

his beliefs when receiving information that is extremely surprising (with zero probability)?

Game theorists have tried to narrow down the set of equilibria by adding more restrictions

on off-equilibrium path beliefs.

Definition 5. Almost Perfect Bayesian Equilibrium: modifying Bayesian updating as

For any information set h′ and following information set h reached with positive proba-

bility from h′ under (µ, b),

µ (t) =
P µ,b (t | h′)

P µ,b (hh′ | h′)

∑
t′∈hh′

µ (t′) ∀t∈hh′

where hh′ := {t ∈ h : ∃t′ ∈ h′, t′ ≺ t}

Theorem 1. Every almost perfect Bayesian equilibrium is subgame perfect.

Definition 6. Sequential Equilibrium.

In a finite extensive form game, a system of beliefs µ is consistent with the strategy

profile b if there exists a sequence of completely mixed sequence of behavior strategy profiles{
bk
}
k
converging to b such that the associated sequence of system of beliefs

{
µk
}
k
obtained

via Bayes’ rule converges to µ.

A strategy profile b is a sequential equilibrium if it is sequentially rational at every infor-

mation set, for some consistent system of beliefs µ.

Remark.

• Sequential Equilibrium = Sequential Rationality + Consistent Belief.
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Figure 1: Summary

• Since consistency implies Bayesian updating at reached information sets, every sequen-

tial equilibrium is a weak PBE. The strategy profile also constitutes a SPE.

• (Existence) There exists at least one sequential equilibrium for every finite extensive

form game (Kreps and Wilson, 1982).

Definition 7. Intuitive Criterion (Cho and Krep, 1987): putting zero probability on the

equilibrium-dominated thing.

2 Asymmetric Information

Definition 8. Adverse Selection v.s. Moral Hazard.

Adverse Selection: “hidden information” problems

Moral Hazard: “hidden action” problems

Definition 9. Screening v.s. Signaling.

Screening: the uninformed monopolist offers different contracts to separate out agents.

Signaling: an informed agent takes a costly action to signal to the uninformed monopolist.

Definition 10. IR and IC.

IR (individual rationality): agents prefer to sign the contract than not to.
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IC (incentive compatibility): agents prefer to act according to his true type than to mimic

others.

3 Problem Set1

Exercise 1. Dynamic Pricing

Consider a seller (Sheila) selling a nondurable good to a buyer (Bruce). There are two

periods, and Bruce can purchase one unit in both, either, or neither periods. Both Bruce

and Sheila discount by rate δ ∈ (0, 1). Denote Bruce’s reservation price by v, so that Bruce’s

payoff is given by d1 (v − p1)+ δd2 (v − p2), where pt is the price charged by Sheila in period

t, and dt = 1 if Bruce purchases in period t and = 0 otherwise. Similarly, Sheila’s payoff

is d1p1 + δd2p2. It is common knowledge that Sheila has zero costs of production. There is

incomplete information about Bruce’s reservation price.

The game is as follows: In the first period, Sheila announces a price p1. Nature then

determines Bruce’s reservation price (type) according to the probability distribution that

assigns probability 1
2
to v = vH and probability 1

2
to v = vL. Bruce learns his type and

then decides whether to buy or not to buy. In the second period, Sheila again announces a

price (knowing whether Bruce had bought or not in the first period) and Bruce then decides

whether to buy or not. Assume 0 < 2vL < vH . Restrict attention to pure strategies and

assume that Bruce always buys when he is indifferent.

1. Describe Sheila’s and Bruce’s (extensive form) strategies of the two period game.

2. Consider a subgame starting at p1 ∈ (vL, δvL + (1− δ) vH ]. Describe a separating

weak perfect Bayesian equilibrium of this subgame (different types of the buyer choose

different actions in the first period) and verify this is indeed an equilibrium.

3. Consider a subgame starting at p1 ≤ vL. Describe a pooling weak perfect Bayesian

equilibrium of this subgame and verify this is indeed an equilibrium.

4. Suppose Sheila must choose p1 ≤ δvL + (1− δ) vH and the subsequent play starting at

p1 is specified by (2) and (3). Which price will Sheila charge in the first period?

Solution. 1. The timing of the game is specified as: S chooses p1 → N chooses v → B

chooses d1 (v, p1) → S updates her belief and chooses p2 (p1, d1) → B chooses d2 (v, p1, d1, p2).

A strategy for Sheila is (p1, p2 (p1, d1)), where p1 ∈ R+ and p2 (p1, d1) : R+×{0, 1} → R+.

1The questions are designed for Problem Set 4 by Prof. Xi Weng at Guanghua School of Management,
Peking University.
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A strategy for Bruce is (d1 (v, p1) , d2 (v, p1, d1, p2)),where d1 (v, p1) : {vH , vL} × R+ →
{0, 1}, and d2 (v, p1, d1, p2) : {vH , vL} × R+ × {0, 1} × R+ → {0, 1}.

2. Note that in a separating equilibrium, Sheila will assign probability 1 to vH or vL in

the second period. She will charge a price of p2 = vH or p2 = vL, respectively. Consider the

following separating behavior:

d1 (v, p1) =

1, v = vH

0, v = vL

p2 (p1, d1) = d1vH + (1− d1) vL

d2 (v, p1, d1, p2) = 1

and the belief

µ (vH | d1 = 1) = 1

µ (vH | d1 = 0) = 0

We need to check that both types have no incentive to deviate from d1 (v, p1). Since p1 >

vL, the low type will not deviate to buy. For the high type, the above profile generates a payoff

of (vH − p1), while deviation generates δ (vH − vL). (vH − p1) ≥ δ (vH − vL) guarantees that

it is indeed a weak PBE.

3. Consider the following strategies

d1 (v, p1) = 1, v = vH and v = vL

p2 (p1, d1) = vH

d2 (v, p1, d1, p2) =

1 v = vH

0 v = vL

and the belief

µ (vH | d1 = 1) =
1

2
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µ (vH | d1 = 0) =
1

2

4. If vL < p1 ≤ δvL + (1− δ) vH , Sheila’s expected payoff is 1
2
(p1 + δvH) +

1
2
(0 + δvL),

which increases with p1. So the maximum payoff is

π1 = δvL +
1

2
vH

If p1 ≤ vL, Sheila’s expected payoff is p1+
1
2
δvH , which increases with p1. So the maximum

payoff is

π2 = vL +
1

2
δvH

Note that π1 − π2 = (1− δ)
(
1
2
vH − vL

)
≥ 0, Sheila will charge p∗1 = δvL + (1− δ) vH in

the first period.

Exercise 2. Signaling Game

Consider the following signaling game where player 1’s type θ is either θ′ (with probability

p) or θ′′ (with probability 1− p).

Player 1 observes her type and chooses an action a1 ∈ {U,D}. Player 2 observes 1’s

action but not 1’s type, and chooses a2 ∈ {L,R}.
When θ = θ′, the payoff matrix is:

L R

U 3, 3 0, 0

D 0, 0 2, 2

When θ = θ′′, the payoff matrix is:

L R

U 1, -1 -1, 1

D -1, 1 1, -1

1. Prove or disprove that the game have a “separating” perfect Bayesian equilibrium,

where 1 takes different actions under different types. Specify the equilibrium if there

exists a separating PBE. (Hint: Don’t forget to specify 2’s belief.)

2. Specify a pure strategy “pooling” perfect Bayesian equilibrium of this game. For what

values of p will this be an equilibrium?

3. For what values of p does the game have a PBE in which type θ′′ plays U with proba-

bility 1 and type θ′ assigns strictly positive probability to both actions?
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Solution. 1. Suppose player 1’s strategy is playing U when observing θ′ and playing D

when observing θ′′. By Bayesian updating, player 2’s belief should be µ (θ′ | U) = 1 and

µ (θ′ | D) = 0. Player 2’s optimal choice is to play L when observing U and to play L also

when observing D. But player 1 has incentive to deviate to U when observing θ′′, since it

yields a higher payoff (−1 < 1). Thus it cannot constitute a PBE.

Suppose then player 1’s strategy is playing D when observing θ′ and playing U when

observing θ′′. By Bayesian updating, player 2’s belief should be µ (θ′ | U) = 0 and µ (θ′ | D) =

1. Player 2’s optimal choice is to play R when observing U and to play R also when observing

D. But player 1 has incentive to deviate to D when observing θ′′, since it yields a higher

payoff (−1 < 1). Thus it cannot constitute a PBE.

Therefore, there does not exist a separating PBE in this game.

2. Consider a pooling PBE in which player 1 chooses U no matter which type he is. Player

2’s on-path belief should be µ (θ′ | U) = p and the off-path belief µ (θ′ | D) = q remains to

be determined. EU2 (L | U) = 3p− (1− p) = 4p−1 and EU2 (R | U) = 0p+(1− p) = 1−p.

If p ≥ 2
5
, L becomes 2’s optimal choice given this belief. For player 1, U satisfies sequential

rationality. For the information sets off the path, note that EU2 (L | D) = 0q+(1− q) = 1−q

and EU2 (R | D) = 2q−(1− q) = 3q−1. If q ≤ 1
2
, player 2 will choose L when (surprisingly)

observing D. So the equilibrium can be described as{
U,U ;L,L; p ≥ 2

5
, q ≤ 1

2

}
Similarly, we can also consider the pooling PBE candidate where player 1 always chooses

D.

3. Suppose player 1’s strategy is such PBE is σ (θ′′) (U) = 1 and σ (θ′) (U) = x > 0,

where σ means the probability to play U. Player 2’s belief is

µ (θ′ | U) =
P (Uθ′)

P (Uθ′) + P (Uθ′′)
=

px

px+ 1− p

µ (θ′ | D) = 1

Now let’s check the sequential rationality requirement. So player 2’s best response when

observing D is R, i.e., b2 (D) = R. Note that when b2 (D) = R, type θ′′ can play D and get

the payoff 1. For U to be the optimal choice for type θ′′, player 2’s choice when observing U

has to be L. But then type θ′ will have no incentive to mix between U and D, since U will

generate a higher payoff (3 > 2). Therefore, this strategy profile cannot constitute a PBE.

Exercise 3. Adverse Selection
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Consider a monopolistic market for cars. There are two consumers with quasi-linear

preferences over cars and money. Consumer 1 is willing to buy at most one car and is willing

to pay at most 7 for it. Consumer 2 is willing to buy at most two cars. He is willing to pay

at most 10 for a single car and at most 15 for two cars. The monopolist meets one of these

two consumers with equal probability. Cars are sold only in whole units and there are no

costs.

1. Assume the monopolist can distinguish between the two consumers and can offer con-

tracts that depend on the consumer’s type. Find the optimal contracts.

2. Assume next that that the monopolist cannot observe the consumer’s type. Find the

optimal contract/s.

3. How would your answer to (2) change if consumer 1 was willing to pay at most 4 for

a car (instead of 7)?

Solution. 1. If the monopolist can distinguish between the two consumers, the optimal

contracts are (q1, p1) = (1, 7) for consumer 1 and (q2, p2) = (2, 15) for consumer 2.

2. Assume the monopolist cannot observe the consumer’s type. Note that consumer 2 has

higher willingness to pay than consumer 1, which implies that consumer 2 has an incentive

to disguise as consumer 1 if the monopolist targets at consumer 1 only.

i) A single contract (q, p). As discussed above, we have (q, p) = (2, 15), and the expected

payoff for the monopolist is π1 =
15
2
.

ii) Two contracts (q1, p1) and (q2, p2). The maximization problem for the monopolist is

max
1

2
(p1 + p2)

s.t.


p1 ≤ 7 IR1

p2 ≤ 15 IR2

15− p2 ≥ 10− p1 IC2

It solves p∗1 = 7 and p∗2 = 12. The expected payoff for the monopolist is π2 =
1
2
(7 + 12) =

19
2
> π1 =

15
2
.

The optimal contracts are (q1, p1) = (1, 7) and (q2, p2) = (2, 12).

3. If 7 is changed to 4, the two contracts case becomes

max
1

2
(p1 + p2)
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s.t.


p1 ≤ 4 IR1

p2 ≤ 15 IR2

15− p2 ≥ 10− p1 IC2

It solves p∗1 = 4 and p∗2 = 9. The expected payoff for the monopolist is π2 =
1
2
(4 + 9) =

13
2
< π1 =

15
2
.

The optimal contract is (q, p) = (2, 15).

Exercise 4. Regulating Natural Monopoly

A public utility commission (the regulator) is charged with regulating a natural monopoly.

The cost function of the natural monopoly is given by

C (q, θ) =

0, q = 0

K + θq, q > 0

where q is the quantity produced, K > 0 is the publicly known fixed cost, and θ ∈ (0, 1) is

marginal cost. The inverse demand curve for the good is p (q) = max {1− 2q, 0}. Supposing
there are no income effects for this good, consumer surplus is given by

V (q) =

∫ q

0

p (q̃) dq̃ − p (q) q

The regulator determines the firm’s regulated quantity q (with the regulated price given

by p (q)) and subsidy s, as well as whether the firm is allowed to operate at all. The firm

cannot be forced to operate.

The firm wishes to maximize expected profits,

Π (q) = p (q) q − C (q, θ) + s

The regulator maximizes the total of consumer surplus and firm profits net of the subsidy,

V (q) + Π (q)− s =

∫ q

0

p (q̃) dq̃ − C (q, θ)

1. Suppose the marginal cost θ > 0 is publicly known. Solve the regulator’s problem.

Carefully analyze when it is optimal not to allow the firm to operate.

2. Suppose the regulator’s beliefs assign probability αi ∈ (0, 1) to θ = θi ∈ (0, 1), where

α1 + α2 = 1 and θ1 < θ2. Write down the regulator’s optimization problem, being

explicit about the IC and IR constraints.
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3. Which IR constraint is implied by the other constraints, and why? One of the IC

constraints is an implication of two other conditions holding with equality. Which one

and why?

4. Suppose the regulator chooses qi > 0 for both types of the firm. Solve the optimal q1

and q2. Compare your results in (1) and (4), and explain.

5. Suppose the regulator can choose to shut down one type of the firm. Which type will

be shut down by the regulator? Resolve the regulator’s optimization problem in this

case.

6. From your results in (4) and (5), when is it optimal not to allow one type of the firm

to operate? Explain the intuition.

Solution. 1. If the firm is allowed to operate, the regulator’s problem is

max
q,s

V (q) + Π (q)− s =

∫ q

0

(1− 2q̃) dq̃ −K − θq

s.t. Π(q) = (1− 2q) q −K − θq + s ≥ 0

It solves q∗ = 1−θ
2

and s∗ ≥ K. The maximized social welfare W ∗ =
(
1−θ
2

)2 −K. When

K >
(
1−θ
2

)2
, it is optimal not to allow the firm to operate.

2. The regulator’s optimization problem is

max
q1,s1,q2,s2

2∑
i=1

αi

[∫ qi

0

(1− 2q̃) dq̃ −K − θiqi

]

s.t.



(1− 2q1) q1 −K − θ1q1 + s1 ≥ 0 IR1

(1− 2q2) q2 −K − θ2q2 + s2 ≥ 0 IR2

(1− 2q1) q1 −K − θ1q1 + s1 ≥ (1− 2q2) q2 −K − θ1q2 + s2 IC1

(1− 2q2) q2 −K − θ2q2 + s2 ≥ (1− 2q1) q1 −K − θ2q1 + s1 IC2

3. IR constraint of type θ1 is implied by the other constraints. If IR2 and IC1 are

satisfied, IR1 naturally holds. The reason is, θ1 < θ2 guarantees that type 1 earns a higher

profit than type 2 when type 1 is mimicking type 2. IR2 guarantees that type 2 earns a

positive profit and IC1 guarantees that type 1 earns a higher profit if he is not mimicking

type 2.
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IC constraint of type θ2 is an implication of IC1 holding with equality.

[(1− 2q2) q2 −K − θ2q2 + s2]− [(1− 2q1) q1 −K − θ2q1 + s1]

= [(1− 2q2) q2 −K − θ1q2 + s2]− [(1− 2q1) q1 −K − θ1q1 + s1]− θ2q2 + θ1q2 + θ2q1 − θ1q1

=(q1 − q2) (θ2 − θ1) ≥ 0

4. From discussion in (3), the regulator’s optimization problem can be simplified as

max
q1,s1,q2,s2

2∑
i=1

αi

[∫ qi

0

(1− 2q̃) dq̃ −K − θiqi

]

s.t.


(1− 2q2) q2 −K − θ2q2 + s2 ≥ 0 IR2

(1− 2q1) q1 −K − θ1q1 + s1 ≥ (1− 2q2) q2 −K − θ1q2 + s2 IC1

(1− 2q2) q2 −K − θ2q2 + s2 ≥ (1− 2q1) q1 −K − θ2q1 + s1 IC2

It solves 

q∗1 = 1−θ1
2

q∗2 = 1−θ2
2

s∗2 ≥ K

s∗2 +
1−θ2
2

(θ2 − θ1) ≤ s∗1 ≤ s∗2 +
1−θ1
2

(θ2 − θ1)

5. Type θ2 with a higher cost will be shut down. Now the regulator’s optimization

problem becomes

max
q1,s1

α1

[∫ q1

0

(1− 2q̃) dq̃ −K − θ1q1

]

s.t.

(1− 2q1) q1 −K − θ1q1 + s1 ≥ 0

(1− 2q1) q1 −K − θ2q1 + s1 ≤ 0

It solves q∗1 = 1−θ1
2

, K ≤ s∗1 ≤ K + 1−θ1
2

(θ2 − θ1).

6. In (4), the social welfare is

W4 = α1

[(
1− θ1

2

)2

−K

]
+ α2

[(
1− θ2

2

)2

−K

]
In (5), the social welfare is
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Figure 2: Game for Exercise 5

W5 = α1

[(
1− θ1

2

)2

−K

]

If K ≥
(
1−θ2
2

)2
, it optimal not to allow type θ2 to operate.

Exercise 5. Sequential Equilibrium v.s. Intuitive Criterion

In the game illustrated by Figure 2, the probability that player I is type t1 is 1
2
and the

probability that he is type t2 is 1
2
. The first payoff is player I’s payoff, and the second is

player II’s.

1. Describe a pooling weak perfect Bayesian equilibrium in which both types of player I

play L, and verify this is indeed an equilibrium.

2. Show that, for all values of x, the outcome in which both types of player I play L is se-

quential by explicitly describing the converging sequence of completely mixed behavior

strategy profiles and the associated system of beliefs.

3. For what values of x does this equilibrium pass the intuitive criterion?

Solution. 1. Consider the strategies

s1 (t1) = s1 (t2) = L

s2 (R) = D
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and the beliefs

µ (t1 | L) = µ (t2 | L) =
1

2

µ (t1 | R) ≤ 2

5

2. Suppose σ1 (t1) = 1− xn, σ1 (t2) = 1− yn with xn → 0 and yn → 0. Since weak PBE

only needs the off-path belief to be µ (t1 | R) ≤ 2
5
, let’s just take µ (t1 | R) = 1

5
. By Bayes’

rule,

µ (t1 | L) =
1
2
(1− xn)

1
2
(1− xn) +

1
2
(1− yn)

=
1− xn

1− xn + 1− yn
→ 1

2

which naturally holds. And

µ (t1 | R) =
1
2
xn

1
2
xn +

1
2
yn

=
xn

xn + yn
→ 1

5

One example is xn = 1
n
and yn = 4

n
.

3. If x < 2, player 2 believes t2 type has no incentive to deviate to R and only t1 type

would possibly deviate to R. So player 2 will assign µ (t2 | R) = 0 and µ (t1 | R) = 1, which

is contradictory to µ (t1 | R) ≤ 2
5
. So this equilibrium does not pass the intuitive criterion.

If x ≥ 2, this equilibrium passes the intuitive criterion.
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Suggested Solutions for the First Midterm ∗

Xincheng Qiu†

Peking University

April 2017

Exercise 1. Suppose Country A constructs facilities for the development of nuclear weapons.

Country B sends a spy ring to Country A to ascertain whether it is developing nuclear

weapons, and is considering bombing the new facilities. The spy ring sent by Country B

is of quality α ∈
(
1
2
, 1
)
: if Country A is developing nuclear weapons, Country B’s spy ring

will correctly report this with probability α, and with probability 1 − α it will report a

false negative. If Country A is not developing nuclear weapons, Country B’s spy ring will

correctly report this with probability α, and with probability 1 − α it will report a false

positive. Country A must decide whether or not to develop nuclear weapons, and Country

B, after receiving its spy reports, must decide whether or not to bomb Country A’s new

facilities. The payoffs to the two countries appear in the following table.

Country B

Bomb
Don’t

Bomb

Country A
Don’t Develop 1

2
, 1
2

3
4
, 1

Develop 0, 3
4

1, 0

1. Depict this situation as a normal-form game (i.e., write down the payoff matrix). For

each α ∈
(
1
2
, 1
)
, are there any strictly dominated strategies in the game?

2. For each α ∈
(
1
2
, 1
)
, find the game’s set of Nash equilibria.

3. Assuming both countries play their equilibrium strategy, what is the probability that

Country A will manage to develop nuclear weapons without being bombed? How is

this probability changing with α?

∗This problem set is designed by Prof. Xi Weng at Guanghua School of Management, Peking University.
†If you notice any errors or have any comments, please drop me a line at xincheng.qiu@gmail.com
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Solution. First describe the strategy space for each player. SA = {N,D}, where N stands

for “Don’t Develop” and D is short for “Develop”. SB = {BB,BN,NB,NN}, where BB

means that country B will “Bomb” if the spy reports a nuclear weapon and will still “Bomb”

if the spy reports no nuclear weapons. Similarly, BN represents a strategy that country B

will “Bomb” if the spy reports a nuclear weapon and will “Not Bomb” if the spy reports no

nuclear weapons. NB and NN are defined in the same way.

1. The payoff matrix is in essence a concise representation of the payoff functions.

Country B

BB BN NB NN

Country A
N 1

2
, 1
2

1
2
+ α

4
, 1
2
+ α

2
3
4
− α

4
, 1− α

2
3
4
, 1

D 0, 3
4

1− α, 3
4
α α, 3

4
− 3

4
α 1, 0

For Country A, there is no dominated strategy. For Country B, NB is strictly domi-

nated by BN . Note that α ∈
(
1
2
, 1
)
, so

(
1

2
+

α

2

)
−
(
1− α

2

)
= α− 1

2
> 0

3

4
α−

(
3

4
− 3

4
α

)
=

3

4
(2α− 1) > 0

2. Since NB is a strictly dominated strategy, Country B will never play NB with a

positive probability in a Nash equilibrium. We can thus eliminate NB from the payoff

matrix.

Country B

BB BN NN

Country A
N 1

2
, 1
2

1
2
+ α

4
, 1
2
+ α

2
3
4
, 1

D 0, 3
4

1− α, 3
4
α 1, 0

There is no pure strategy equilibrium in this game. Consider a mixed strategy equi-

librium, in which Country A plays N with probability p and D with probability 1− p.

For Country B, the expected payoff of each strategy now becomes:

EUB (BB) =
1

2
p+

3

4
(1− p) = −1

4
p+

3

4

EUB (BN) =

(
1

2
+

α

2

)
p+

3

4
α (1− p) =

(
1

2
− 1

4
α

)
p+

3

4
α

2



Figure 1: Country B’s Expected Payoff of Each Strategy

EUB (NN) = p

Country B’s expected payoff of each strategy is depicted in figure 1(where x axis is for p

and y axis for the expected payoff; Blue for EUB (BB), Red for EUB (BN) and Green

for EUB (NN)). EUB (BB) (p) and EUB (BN) (p) intersect at p1 = 3−3α
3−α

∈
(
0, 3

5

)
.

EUB (BB) (p) and EUB (NN) (p) intersect at p2 =
3
5
. EUB (BN) (p) and EUB (NN) (p)

intersect at p3 =
3α
2+α

∈
(
3
5
, 1
)
. Now it is clear from Figure 1 that:

(a) when 0 ≤ p < 3−3α
3−α

, Country B’s best response is to play BB;

(b) when p = 3−3α
3−α

, Country B is indifferent between BB and BN ;

(c) when 3−3α
3−α

< p < 3α
2+α

, Country B’s best response is to play BN ;

(d) when p = 3α
2+α

, Country B is indifferent between BN and NN ;

(e) when 3α
2+α

< p ≤ 1, Country B’s best response is to play NN .

Therefore, for Country B to play mixed strategies, p = 3−3α
3−α

or p = 3α
2+α

.1

1I will only deduct 1 point for arithmetic mistakes in the calculation, as long as you were clear about the
way of looking for the mixed strategy Nash equilibrium.

3



Case 1. p = 3−3α
3−α

. Assume that Country B plays BB with probability q1 and BN

with probability 1−q1. For Country A, the expected payoff of each strategy

now becomes:

EUA (N) =
1

2
q1 +

(
1

2
+

α

4

)
(1− q1)

EUA (D) = (1− α) (1− q1)

Indifference Principle implies that EUA (N) = EUA (D), i.e., q1 = 2−5α
4−5α

∈(
−∞,−1

3

)
∪ (3,+∞), which could not be a mixed strategy.

Case 2. p = 3α
2+α

. Assume that Country B plays BN with probability q2 and NN

with probability 1−q2. For Country A, the expected payoff of each strategy

now becomes:

EUA (N) =

(
1

2
+

α

4

)
q2 +

3

4
(1− q2)

EUA (D) = (1− α) q2 + (1− q2)

Indifference Principle implies that EUA (N) = EUA (D), i.e., q2 = 1
5α−1

∈(
1
4
, 2
3

)
.

Therefore, the unique Nash equilibrium is the mixed strategy profile
{(

3α
2+α

, 2−2α
2+α

)
,
(
0, 1

5α−1
, 0, 5α−2

5α−1

)}
.

3. The probability that Country A will manage to develop nuclear weapons without being

bombed is

Pr (develop w/o bombed) =
2− 2α

2 + α
×
[

1

5α− 1
× (1− α) +

5α− 2

5α− 1

]
=

(4α− 1) (2− 2α)

(5α− 1) (2 + α)

∂ Pr

∂α
=

(−16α+ 10) (5α2 + 9α− 2)− (−8α2 + 10α− 2) (10α + 9)

(5α− 1)2 (2 + α)2

=
−2 (61α2 − 26α + 1)

(5α− 1)2 (2 + α)2
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The solutions of 61x2 − 26x + 1 = 0 are x = 13±6
√
3

61
. Note that 13+6

√
3

61
< 1

2
. When

α ∈
(
1
2
, 1
)
, 61α2 − 26α + 1 > 0, so ∂ Pr

∂α
< 0. This probability decreases as α increases.

Exercise 2. Suppose that two people can invest in a project that would be valuable to both

of them if it is completed. The project requires 2 units of investment and will give a value of

25 to each person if undertaken. Person 1 can only invest in odd periods while person 2 can

only invest in even periods. There are four periods, with the cost of investment in period

t equal to 2t per unit of investment. That is, an investment of 1 costs 2 in period 1, 4 in

period 2, 6 in period 3 and 8 in period 4. If there are at least 2 units of investment at the

end of period 4 each person receives a payoff of 25 minus the cost of the investments that

player has made. If there are 0 or 1 units of investment at the end of period 4 each person

just loses the cost of her investment, if any. Suppose that in each period that a player can

make an investment, either 0 or 1 can be invested.

1. Write down the extensive form tree for the game. What is the subgame perfect equi-

librium for the game? (Be sure to describe precisely the strategies in the equilibrium.)

2. Suppose now that in each period that a player can make an investment, each player

can invest 0, 1, or 2. What is the subgame perfect equilibrium?

3. Suppose now that as before, in each period that a player can make an investment, that

player can invest 0 or 1, but that there are six periods instead of four periods. Also as

before, the cost of making an investment of 1 is 2t, where t is the period the investment

is made. Thus, the cost of investing 1 in period 5 in 10 and the cost in period 6 is 12.

What is the subgame perfect equilibrium outcome in this case? (You do not need to

specify fully the equilibrium strategies in this case, but you should explain the logic

briefly. There is also no need to write out the extensive form tree for the game.)

Solution. (Dynamic Game)

1. The extensive form is shown in figure 2.

The subgame perfect equilibrium is {(I, INNN) , (NI,NIININNN)}.

2. Suppose that each player can invest 0, 1, or 2 in each period. In the 4th stage, player

2 will invest 2 if there is no investment (since 25 − 16 = 9 > 0), will invest 1 if there

is 1 investment (since 25 − 8 = 17 > 0), and will not invest if there are at least 2

units of investment. Expecting player 2’s behavior in the final stage, player 1 will

never invest any unit in the 3rd stage, since player 2’s choice will always guarantee

that there are at least 2 units of investment. Again, player 2 anticipate that player

5



Figure 2: Extensive Form and Backward Induction
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1 will not invest in the 3rd stage and that player 2 himself will fulfill the investment

in the 4th stage, player 2 prefers to invest in the 2nd stage (at a lower cost). By

the same logic, imagine that player 1 can foresee what player 2 will do in the 2nd

stage, player 1 will not invest in the 1st stage. The subgame perfect equilibrium

is thus {(0, 000000000) , (210, 210100000100000000000000000)}, yielding an outcome

where player 1 will not invest in the 1st stage, player 2 will invest 2 units in the 2nd

units, and there is no more investment in the following stages. The outcome payoff

vector is(25, 17).2

3. We perform backward induction. In the 6th stage, player 2 will invest if there is one

unit of investment (since player 2’s minimum payoff would be 25 − 12 − 8 = 5 > 0),

will not invest if there is no investment or if there are at least 2 units of investment.

Player 1 hopes to see that project can be completed. Therefore, in the 5th stage, if

there are already at least 2 units of investment, player 1 will not invest; if there are

already one units of investment, player 1 will not invest either, since player 2 will invest

in the final stage; if there is no investment, player 1 will invest one unit, anticipating

that player 2 will continue to invest. In the 4th stage, player 2 will not invest if there

are at least 2 units, will invest if there is only 1 unit (otherwise he will invest in the 6th

stage at a higher cost, since player 1 will not invest in this case), and will not invest

if there is no investment since player 1 will invest in the 5th stage. By the same logic,

in the 3rd stage, player 1 will not invest if there are at least 1 unit and will invest if

there is no investment. In the 2nd stage, player 2 will invest if there is 1 unit and will

not invest otherwise. In the first stage, if player 1 invests, his payoff is 23; if he does

not invest, his payoff is 19. Therefore player 1 prefers to invest in the 1st stage. The

equilibrium outcome is that player 1 invests in the 1st stage and player 2 invests in the

2nd stage, and there is no further investment in the following stages, yields a payoff

vector of (23, 21).

Exercise 3. Consider a Hotelling duopoly model where consumers are uniformly distributed

on the interval [0, 1] and are of mass 1. A consumer of type x is located at some point x on

the interval [0, 1]. Consumers buy up to one unit from one of the firms. Firm i is located at

li somewhere on the interval [0, 1], it charges price pi, and consumers have to travel to the

firm if they decide to visit it. The transportation cost is t = τ (x− li)
2. If a consumer of

type x buys product i, she then derives utility

2There are various possible notations for the strategy profile. The key is you are explicit in the notation
about the idea that the strategy is a complete contingent plan for every situation.
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vi (x) = r − τ (x− li)
2 − pi

where r is each consumer’s reservation value. The marginal cost of production is normalized

to 0. In such a market, we analyze a duopoly in which firms first simultaneously decide

which location to pick (or, equivalently, which product to produce) and secondly, they si-

multaneously set prices.

1. Suppose government regulation requires p1 = p2 = p with r− τ − p ≥ 0. Find all Nash

equilibria in pure strategies when the firms simultaneously choose the location.

2. Suppose government regulation is relaxed. The firms can freely choose both locations

and prices. However, the location is restricted to be on the interval [0, 1]. We analyze

a model in which firms first simultaneously decide which location to pick and secondly,

after observing the locations, they simultaneously set prices. Given the locations l1

and l2, find the equilibrium prices set in the second stage.

3. Find the locations l1 and l2 chosen in the subgame perfect equilibrium. Explain why

your result is different from the one in 1.

4. Suppose government regulation is further relaxed such that there is no restriction on

the locations (firms can choose locations outside the interval [0, 1]). What are the

locations l1 and l2 chosen in the subgame perfect equilibrium?

Solution. (Hotelling Duopoly Model)

1. The condition r−τ−p ≥ 0 guarantees that every consumer will buy one unit (from the

nearest firm). We solve for the Nash equilibrium of the simultaneous location game.

Firm 1’s best response is

l∗1 (l2) =


l2 + ε 0 ≤ l2 <

1
2

l2 l2 =
1
2

l2 − ε 1
2
< l2 ≤ 1

where ε > 0 and ε → 0. Similarly we can write down firm 2’s best response. They

intersect at the point l1 = l2 = 1
2
. This constitutes the unique pure strategy Nash

equilibrium: both firms locate at the center.

Remark 1. This is the standard Median Voter Theorem. The key insight is that al-

though firms are able to differentiate products, it turns out that they will not. To
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grasp as much market share as possible, they locate at the center to cater to consumer

tastes.

2. Note that if l1 = l2, this leads to the standard Bertrand competition model: p∗1 = p∗2 =

0. Now let us consider the case l1 ̸= l2. Without loss of generality, suppose l1 < l2. The

key is to find the consumer x∗ such that she is indifferent between the two products.

r − τ (x∗ − l1)
2 − p1 = r − τ (x∗ − l2)

2 − p2

which implies that

x∗ =
p2 − p1

2τ (l2 − l1)
+

l1 + l2
2

(1)

Consumers with x < x∗will buy from firm 1 and Consumers with x > x∗will go to firm

2. The profits of the two firms are

π1 = p1x
∗ =

(
p2 − p1

2τ (l2 − l1)
+

l1 + l2
2

)
p1

π2 = p2 (1− x∗) =

(
1− p2 − p1

2τ (l2 − l1)
− l1 + l2

1
2

)
p2

By F.O.C. we can derive the best responses of the two firms.

∂π1

∂p1
= 0 ⇒ p∗1 (p2) =

1

2

[
τ
(
l22 − l21

)
+ p2

]
∂π2

∂p2
= 0 ⇒ p∗2 (p1) =

1

2

[
2τ (l2 − l1)− τ

(
l22 − l21

)
+ p1

]
From these two equations, we can solve for the equilibrium prices

p∗1 (l1, l2) =
τ
3
(l2 − l1) [2 + l1 + l2]

p∗2 (l1, l2) =
τ
3
(l2 − l1) [4− l1 − l2]

(2)

Note that if 0 ≤ l1 < l2 ≤ 1, both p∗1 (l1, l2) and p∗2 (l1, l2) are positive.

3. After simple algebra using Equation 1 and 2, firms’ problems can be written as

max
l1∈[0,1]

π1 = p∗1x
∗ =

τ

18
(l2 − l1) (l1 + l2 + 2)2
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max
l2∈[0,1]

π2 = p∗2 (1− x∗) =
τ

18
(l2 − l1) (4− l1 − l2)

2

Again we can derive the best responses of the two firms by F.O.C.∂π1

∂l1
= τ

18
(l1 + l2 + 2) (l2 − 3l1 − 2)

∂π2

∂l2
= τ

18
(4− l1 − l2) (l1 − 3l2 + 4)

(3)

Note that when locations are restricted to be on the interval [0, 1], l1 + l2 + 2 > 0 and

4 − l1 − l2 > 0, so the first order derivatives have the same signs as l2 − 3l1 − 2 and

l1 − 3l2 + 4, respectively. Combine the two equations we solve for the equilibrium

l∗1 = −1
4

l∗2 =
5
4

However, the location is restricted to be on the interval [0, 1]. The equilibrium location

decisions should be l∗1 = 0 and l∗2 = 1. (Note that ∂π1

∂l1

∣∣∣
l1=0,l2=1

< 0 and ∂π2

∂l2

∣∣∣
l1=0,l2=1

> 0)

4. If there is no restriction on the locations, consider again the F.O.C.s in Equation 3.

There are four potential cases

l1 + l2 + 2 = 0

4− l1 − l2 = 0
,

l1 + l2 + 2 = 0

l1 − 3l2 + 4 = 0
,

l2 − 3l1 − 2 = 0

4− l1 − l2 = 0
,l2 − 3l1 − 2 = 0

l1 − 3l2 + 4 = 0
, with corresponding solutions ∅,

l∗1 = −5
2

l∗2 =
1
2

,

l∗1 =
1
2

l∗2 =
7
2

,

l∗1 = −1
4

l∗2 =
5
4

,

respectively. Remember to verify the S.O.C.s


∂2π1

∂l21
= τ

18
(−6l1 − 2l2 − 8)

∂2π2

∂l22
= τ

18
(2l1 + 6l2 − 16)

The only possible solution is

l∗1 = −1
4

l∗2 =
5
4

.

Remark 2. There are two forces under this setting. First, the tendency to cater to

consumers brings them together (called “market size effect”). Second, the incentive to

enjoy market power drives them differentiate (called “market power effect”). In fact,

as pointed out in Remark 1, Question (1) captures the pure “market size effect” since

there will be no “market power effect” due to fixed price.
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Suggested Solutions for the Second Midterm∗

Xincheng Qiu†

Peking University

May 2017

Question 1. Bargaining with Partial Commitment

Consider the infinite-horizon alternating-offer bargaining model discussed in class. Two

agents i = 1, 2 bargain about how to divide a pie. Time is discrete and indexed by t =

1, 2, · · · . The agents take turns to make proposals: player 1 at odd t while player 2 at even

t.

Now suppose before the bargaining starts, player 2 can choose a number z ∈
[

δ
1+δ

, 1
]
.

The interpretation is that player 2 takes “actions” which partially commit her not to accept

a share strictly less than z. If proposal (x, 1− x) is accepted at time t, 1’s payoff is δt−1x

and 2’s payoff is δt−1 [(1− x)− C (1− x, z)], where δ is the common discount factor and

C (1− x, z) = max {z − (1− x) , 0}. So player 2 will suffer a psychological loss C (1− x, z)

is she receives a share strictly less than z.

Inspired by the subgame perfect equilibrium in the bargaining model, we consider the

following strategy profile: (1) when player 1 proposes, her proposal is (x1, 1− x1) and player

2 accepts any offer if player 1 demands less than x1; and (2) when player 2 proposes, her

proposal is (1− x2, x2) and player 1 accepts any offer if player 2 demands less than x2.

1. For a given z, solve x1and x2 such that the strategies described above constitute a

subgame perfect equilibrium. (Hint: You should consider two cases: x2 > z and

x2 ≤ z.)

2. If player 2 is free to choose any z ∈
[

δ
1+δ

, 1
]
, what will be the optimal z chosen by

player 2?

Solution. 1. Let Mi be the supremum and mi be the infimum of player i’s SPE payoffs

when it is player i’s turn to make an offer.

∗This problem set is designed by Prof. Xi Weng at Guanghua School of Management, Peking University.
†If you notice any errors or have any comments, please drop me a line at xincheng.qiu@gmail.com
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Case 1. x2 > z. Any offer 1−x2 ≥ δM1 proposed by player 2 would be accepted by player

1, hence m2 ≥ 1 − δM1. Any offer 1 − x2 < δm1 proposed by player 2 would be

rejected by player 1, hence M2 ≤ 1− δm1.

Case i. 1 − x1 > z. Any offer 1 − x1 ≥ δM2 proposed by player 1 would be

accepted by player 2, hence m1 ≥ 1 − δM2. Any offer 1 − x1 < δm2

proposed by player 1 would be rejected by player 2, henceM1 ≤ 1−δm2.

Combining the four inequalities, we can obtain M1 = m1 = 1
1+δ

and

M2 = m2 =
1

1+δ
. Therefore, in the SPE, x1 =

1
1+δ

and x2 =
1

1+δ
. Here

we need z < 1− x1 =
δ

1+δ
, which contradicts with z ∈

[
δ

1+δ
, 1
]
.

Case ii. 1 − x1 ≤ z. Any offer 2 (1− x1) − z ≥ δM2 proposed by player 1

would be accepted by player 2, hence m1 ≥ 1
2
(2− z − δM2). Any

offer 2 (1− x1) − z < δm2 proposed by player 1 would be rejected by

player 2, henceM1 ≤ 1
2
(2− z − δm2). Combining the four inequalities,

M1 = m1 =
2−z−δ
2−δ2

and M2 = m2 =
2−2δ+δz
2−δ2

. Therefore, x1 =
2−z−δ
2−δ2

and

x2 =
2−2δ+δz
2−δ2

. Here we need −δ2+z+δ
2−δ2

≤ z < 2−2δ+δz
2−δ2

, i.e., δ
1+δ

≤ z < 2
2+δ

.

Case 2. x2 ≤ z. Any offer 1 − x2 ≥ δM1 proposed by player 2 would be accepted by

player 1, hence m2 ≥ 2 (1− δM1) − z. Any offer 1 − x2 < δm1 proposed by

player 2 would be rejected by player 1, hence M2 ≤ 2 (1− δm1) − z. Now 1 −
x1 ≤ x2 ≤ z. From Case (ii) in Case (1), we know m1 ≥ 1

2
(2− z − δM2) and

M1 ≤ 1
2
(2− z − δm2). Combining the four inequalities, M1 = m1 = 2−z

2(1+δ)
and

M2 = m2 =
2−z
1+δ

. Therefore, x1 =
2−z

2(1+δ)
and x2 =

2+zδ
2(1+δ)

. Here we need z ≥ 2
2+δ

.

To sum, if δ
1+δ

≤ z < 2
2+δ

, the parameters of the SPE strategy profile are(
x1 =

2− z − δ

2− δ2
, x2 =

2− 2δ + δz

2− δ2

)
if 2

2+δ
≤ z ≤ 1, the parameters of the SPE strategy profile are(

x1 =
2− z

2 (1 + δ)
, x2 =

2 + zδ

2 (1 + δ)

)
2. If δ

1+δ
≤ z < 2

2+δ
, player 2’s SPE payoff is ua

2 = 2 (1− x1) − z = δx2 = δ 2−2δ+δz
2−δ2

,

which increases as z increases. If 2
2+δ

≤ z ≤ 1, player 2’s SPE payoff is ub
2 = 2 (1− x1)− z =

δ (2x2 − z) = δ 2−z
1+δ

, which decrease as z increases. Therefore, the optimal z chosen by player

2 is

z∗ =
2

2 + δ

2



Question 2. Repeated Game

Consider the following stage game.

L C R

U 5, 5 7, 0 3, 0

M 0, 0 4, x 0, 0

D 0, 0 0, 0 0, 2

1. Suppose x = 1 and consider the following behavior in the infinitely repeated game

with perfect monitoring: Play MC in period t = 0. Play MC as long as no one has

deviated in the previous two periods. If any player deviates, play DR for two periods

and then return to MC. For what values of the common discount factor δ is this profile

a subgame perfect equilibrium of the infinitely repeated game?

2. Suppose x = 3. How does this change to the stage game affect the range of discount

factors for which the profile in (1) is a subgame perfect equilibrium of the infinitely

repeated game?

Solution. The strategy profile can be represented by the following automaton:

..wMC.start . w1
DR

. w2
DR

. ¬MC.

MC

.

DR

.

¬DR

.

DR

.

¬DR

Apply one-shot deviation principle.

At state wMC , for player 1 not to deviate:

4 + 4δ + 4δ2 + 4δ3 + · · · ≥ 7 + 0 + 0 + 4δ3 + · · · ⇒ δ ≥ 1

2
(1)

For player 2 not to deviate:

x+ xδ + xδ2 + xδ3 + · · · ≥ 0 + 2δ + 2δ2 + xδ3 + · · · (2)

At state w1
DR, player 2 will never deviate. for player 1 not to deviate:

0 + 0 + 4δ2 + 4δ3 + · · · ≥ 3 + 0 + 0 + 4δ3 + · · · ⇒ δ ≥
√
3

2
(3)
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At state w2
DR, for player 1 not to deviate:

0 + 4δ + 4δ2 + 4δ3 + · · · ≥ 3 + 0 + 0 + 4δ3 + · · ·

This equation holds as long as equation 3 holds.

For player 2 not to deviate:

2 + xδ + xδ2 + xδ3 + · · · ≥ 0 + 2δ + 2δ2 + xδ3 + · · · (4)

1. Suppose x = 1. Equation 4 holds for ∀δ ∈ (0, 1) and Equation 2 solves δ ≤
√
5−1
2

.

Since
√
5−1
2

<
√
3
2
, there does not exist such δ that this profile is a SPE.

2. Suppose x = 3. Equation 2 and Equation 4 both hold for ∀δ ∈ (0, 1). Therefore, for

this profile to be a SPE,

δ ≥
√
3

2

Question 3. Asymmetric First Price Auction

Consider a sealed-bid first-price auction with two buyers whose private values are inde-

pendent; the private value of buyer 1 has uniform distribution over the interval [0, 3], and

the private value of buyer 2 has uniform distribution over the interval [3, 4]. Answer the

following questions:

1. Derive the linear Bayesian Nash equilibrium for this game.

2. What is the probability that buyer 2 wins the auction? Why is it different from 1?

3. Compute the seller’s expected revenue in the above equilibrium.

4. Suppose that the distribution of buyer 2’s private value changes to uniform distribution

on [0, 4]. Show that there does not exist a linear Bayesian Nash equilibrium.

5. Find k1 > 0, k2 > 0 such that the following strategies constitute a Bayesian Nash

equilibrium:

s1 (v1) =
1

k1v1

(
1−

√
1− k1v21

)
s2 (v2) =

1

k2v2

(
−1 +

√
1 + k2v22

)
6. Compute the seller’s expected revenue in the above equilibrium. Compare your result

with the one in (3).
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Solution. 1. Consider linear strategies: s1 (v1) = a1 + b1v1 and s2 (v2) = a2 + b2v2. For the

strategy profile (s∗1, s
∗
2) to be a BNE, s∗1 maximizes

Ev2 [U1 | v1] =
∫ s1−a2

b2

3

(v1 − s1) dv2

= (v1 − s1)

(
s1 − a2

b2
− 3

)
F.O.C. implies s∗1 =

1
2
(v1 + a2 + 3b2). Similarly, s∗2 maximizes

Ev1 [U2 | v2] =
∫ s2−a1

b1

0

(v2 − s2)
1

3
dv1

=
1

3
(v2 − s2)

s2 − a1
b1

F.O.C. implies s∗2 =
1
2
(v2 + a1). Therefore,

a1 =
1
2
(a2 + 3b2)

b1 =
1
2

a2 =
1
2
a1

b1 =
1
2

⇒



a1 = 1

b1 =
1
2

a2 =
1
2

b1 =
1
2

The linear BNE is s∗1 (v1) = 1 + 1
2
v1 and s∗2 (v2) =

1
2
+ 1

2
v2.

1

2. The probability that buyer 2 wins the auction is

Pr (s∗1 < s∗2) = Pr (v2 > v1 + 1) =
5

6

3. The seller’s expected revenue is

E (p) =

∫ 4

3

∫ 3

v2−1

(
1 +

1

2
v1

)
1

3
dv1dv2 +

∫ 4

3

∫ v2−1

0

(
1

2
+

1

2
v2

)
1

3
dv1dv2

=
1

3

(
7

6
+

17

3

)
=

41

18

1To be rigorous, you need to verify that the described profile is indeed an equilibrium. This is straight-
forward: check the definition of BNE and verify that each player is maximizing expected payoff given the
other’s strategy.
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4. Consider linear strategies: s1 (v1) = a1 + b1v1 and s2 (v2) = a2 + b2v2. For the strategy

profile (s∗1, s
∗
2) to be a BNE, s∗1 maximizes

Ev2 [U1 | v1] =
∫ s1−a2

b2

0

(v1 − s1) dv2

= (v1 − s1)
s1 − a2

b2

F.O.C. implies s∗1 =
1
2
(v1 + a2). Similarly, s∗2 maximizes

Ev1 [U2 | v2] =
∫ s2−a1

b1

0

(v2 − s2)
1

3
dv1

=
1

3
(v2 − s2)

s2 − a1
b1

F.O.C. implies s∗2 =
1
2
(v2 + a1). Therefore,

a1 =
1
2
a2

b1 =
1
2

a2 =
1
2
a1

b1 =
1
2

⇒



a1 = 0

b1 =
1
2

a2 = 0

b1 =
1
2

We obtain s∗1 = 1
2
v1 and s∗2 = 1

2
v2. Notice that given s∗1 = 1

2
v1, player 2 is sure that

s′2 = 3
2
> s∗1 and s′2 < s∗2 when v2 > 3 and thus yields a higher payoff for player 2. That is,

when v2 > 3, s′2 = 3
2
is a better choice than s∗2 = 1

2
v2, given s∗1 = 1

2
v1. Therefore, s∗1 = 1

2
v1

and s∗2 =
1
2
v2 do not constitute a BNE.2

5. Given s2 (v2) =
1

k2v2

(
−1 +

√
1 + k2v22

)
, s∗1 maximizes

Ev2 [U1 | v1] = (v1 − s1) Pr (s2 ≤ s1)

=
1

4
(v1 − s1)

2s1
1− k2s21

F.O.C. implies

k2v1s
2
1 − 2s1 + v1 = 0

2This provides a good example illustrating why we have to verify that the candidate profile is in fact an
equilibrium, as mentioned in Footnote 1.

6



Note that S.O.C. should also be satisfied, so

s∗1 =
1−

√
1− k2v21
k2v1

Similarly, given s1 (v1) =
1

k1v1

(
1−

√
1− k1v21

)
, s∗2 maximizes

Ev1 [U2 | v2] = (v2 − s2) Pr (s1 ≤ s2)

=
1

3
(v2 − s2)

2s2
1 + k1s22

F.O.C. implies

−k1v2s
2
1 − 2s2 + v2 = 0

Combining with S.O.C. yields

s∗2 =
−1 +

√
1 + k1v22

k1v2

Hence k1 = k2 ≡ k. Note that

ds∗1 (v1)

dv1
=

1

kv21

[
kv21√
1− kv21

−
(
1−

√
1− kv21

)]

=
1

kv21

(
1√

1− kv21
− 1

)
> 0

ds∗2 (v2)

dv2
=

1

kv22

[
kv22√
1 + kv22

−
(
−1 +

√
1 + kv22

)]

=
1

kv22

(
1− 1√

1 + kv22

)
> 0

s∗1 (v1) increases as v1 increases, and s∗2 (v2) is also increasing in v2. Now we show that

s∗1 (v1 = 3) = s∗2 (v2 = 4) by contradiction. Without loss of generality, assume s∗1 (v1 = 3) <

s∗2 (v2 = 4). The monotonicity of s∗2 (v2) guarantees that there exists some v0 < 4 such that

s∗2 (v0) = s∗1 (3). Thus s
∗
2 (v0) > s∗1 (v1), for ∀v1 < 3. Given player 1’s strategy s∗1 (v1), s

∗
2 (v0)

is a better choice for player 2 than s∗2 (v2) when v2 > v0, since player 2 will win at a lower

7



cost. Therefore, if s∗1 (v1 = 3) < s∗2 (v2 = 4), this profile cannot be a BNE. Similarly, we can

argue that if s∗1 (v1 = 3) > s∗2 (v2 = 4), this profile is not a BNE, either. The only possibility

is s∗1 (v1 = 3) = s∗2 (v2 = 4), i.e.,

1

3k

(
1−

√
1− 9k

)
=

1

4k

(
−1 +

√
1 + 16k

)
It gives k = 7

144
.

6. s∗1 (v1) ≤ s∗2 (v2) is equivalent to

v1 ≤
v2√

1 + kv22
or

v2 ≥
v1√

1− kv21

The seller’s expected revenue is

E (p) =
1

12

[∫ 4

0

∫ v2√
1+kv22

0

1

kv2

(
−1 +

√
1 + kv22

)
dv1dv2 +

∫ 3

0

∫ v1√
1−kv21

0

1

kv1

(
1−

√
1− kv21

)
dv2dv1

]

=
1

12k

[∫ 4

0

(
1− 1√

1 + kv22

)
dv2 +

∫ 3

0

(
1√

1− kv21
− 1

)
dv1

]

=
1

12k

[
1−

∫ 4

0

1√
1 + kv22

dv2 +

∫ 3

0

1√
1− kv21

dv1

]

=
1

12k

[
1− 1√

k
ln

(√
kv2 +

√
1 + kv22

)
|40 +

1√
k
arcsin

(√
kv1

)
|30
]

=
1

12k

[
1− 1√

k
ln
(
4
√
k +

√
1 + 16k

)
+

1√
k
arcsin

(
3
√
k
)]

≈ 1.15 <
41

18

Another way to calculate the expected revenue of the seller is to first derive the distribu-

tion. The cumulative distribution function of the revenue p is

F (p) = Pr (max {s1, s2} ≤ p) = Pr

(
v1 ≤

2p

1 + kp2

)
Pr

(
v2 ≤

2p

1− kp2

)
=

1

12

4p2

(1− k2p4)

8



Note that both s∗1 (·) and s∗2 (·) are increasing in the argument, and s∗1 (3) = s∗2 (4) =
12
7
,

which will be the upper bound for the following integral. Therefore the seller’s expected

revenue is3

E (p) =

∫
pdF (p) =

1

3

∫ 12
7

0

pd
p2

(1− k2p4)

=
1

3

{
p

p2

(1− k2p4)
|
12
7
0 −

∫ 12
7

0

p2

(1− k2p4)
dp

}
≈ 1.15 <

41

18

3In grading, it is fine that you did not get the final number for your answer. I will not deduct any point
as long as you clearly write about how to proceed with the expected revenue.
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Suggested Solutions for Game Theory Final 2017∗

Xincheng Qiu†

Peking University

June 2017

Question 1. Quantity Signaling.

There are two firms, 1 and 2 producing the same good. The inverse demand curve is given

by P = θ − q1 − q2, where qi ∈ R+ is firm i’s output. (Note that we are allowing negative

prices.) There is demand uncertainty with nature determining the value of θ, assigning

probability α ∈ (0, 1) to θ = 3, and complementary probability 1 − α to θ = 4. Firm 2 is

informed of the value of θ, while firm 1 is not. Finally, each firm has zero costs of production.

As usual, assume this description is common knowledge.

1. Suppose that firm 2 is a Stackelberg leader. There is a separating perfect Bayesian

equilibrium in which firm 2 chooses q2 =
1
2
when θ = 3. Describe it, and prove it is a

separating perfect Bayesian equilibrium.

2. Does the equilibrium in question 1 pass the intuitive criterion? Why or why not? If

not, describe a separating perfect Bayesian equilibrium that does (you do not need to

prove that the new equilibrium passes the intuitive criterion).

3. Now suppose that firm 2 is a Stackelberg leader who has the option of not choosing

before firm 1: Firm 2 either chooses its quantity, q2, first, or the action W (for wait).

If firm 2 chooses W, then the two firms simultaneously choose quantities, knowing

that they are doing so. If firm 2 chooses its quantity first (so that it did not choose

W), then firm 1, knowing firm 2’s quantity choice then chooses its quantity. Describe a

strategy profile for this dynamic game. What conditions must a (weak) perfect Bayesian

equilibrium satisfy? (Hint: You should explain explicitly what sequential rationality and

belief consistency mean in this situation.)

∗This problem set is designed by Prof. Xi Weng at Guanghua School of Management, Peking University.
†If you notice any errors or have any comments, please drop me a line at xincheng.qiu@gmail.com
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4. For which parameter values is there an equilibrium in which firm 2 waits for all values

of θ.

Solution.

1. Construct a separating PBE in which the strategies are

q2 (θ) =

1
2

θ = 3

2 θ = 4

q1 (q2) =

1
2
(3− q2) =

5
4

q2 =
1
2

1
2
(4− q2) q2 ̸= 1

2

and beliefs are

µ (θ = 3 | q2) =

1 q2 =
1
2

0 q2 ̸= 1
2

A useful notation is to denote firm 2’s payoff by U
(
θ, θ̂, q2

)
, where q2 is firm 2’s choice

and θ̂ is firm 1’s belief about θ. Ignore the non-negative constraint on quantity at this

moment,1

U
(
θ, θ̂, q2

)
=

[
θ − 1

2

(
θ̂ − q2

)
− q2

]
q2 =

(
θ − 1

2
θ̂ − 1

2
q2

)
q2

To verify the this is indeed a PBE, we need to check:

(1) It is immediate that the beliefs on the path-of-play satisfies Bayes’ updating and firm

1 is playing his best response given his belief both on and off the path-of play.

(2) Firm 2’s incentive compatibility constraint:

U

(
3, 3,

1

2

)
=

5

8
> U (3, 4, 2) = 0

U (4, 4, 2) = 2 > U

(
4, 3,

1

2

)
=

9

8

(3) Firm 2 has no incentive to choose any quantity off the path-of-play:

max
q′

U (3, 4, q′) =
1

2
<

5

8
= U

(
3, 3,

1

2

)
1To capture an important intuition, note that U

(
θ, θ̂, q2

)
is decreasing in θ̂ in this environment. To firm

2, the “worst” belief of firm 1 takes the highest possible level of θ̂. In a signalling game, this corresponds to
the type who must choose the full information optimal choice.
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max
q′

U (4, 4, q′) = 2 = U (4, 4, 2)

2. It does not pass the intuitive criterion. Consider any off path quantity q2 ∈
(
1
2
, 1
)
.

Note that

U (4, 3, q2) =

(
4− 1

2
(3− q2)− q2

)
q2 < 2 = U (4, 4, 2)

Moreover,

U (3, 3, q2) =

(
3− 1

2
(3− q2)− q2

)
q2 >

5

8
= U

(
3, 3,

1

2

)
So the dominated set D (q2) = {4}. The above equilibrium contradicts with the intuitive

criterion. The only equilibrium outcome that passes the intuitive criterion is Riley outcome,

in which the full information type is indifferent between his optimal choice and imitating the

other type.

U (4, 4, 2) = U (4, 3, q) =⇒ q = 1

So the Riley quantities for firm 2 are given by

q2 (θ) =

1 θ = 3

2 θ = 4

3. A strategy for firm 2 is a pair of functions {σ1
2, σ

2
2} such that σ1

2: {3, 4} → R+ ∪ {W}
and σ2

2: {3, 4} × {W} → R+. A strategy for firm 1 is a function σ1: {W} ∪ R+ → R+.
2

A strategy profile is a (weak) perfect Bayesian equilibrium if there exist a system beliefs

satisfying the following:

(1) The beliefs satisfy Bayes’ rule on the path of play.

(2) After the choice W by firm 2, the players’ choices constitute a Nash equilibrium of

the resulting incomplete information game given the players’ beliefs.

(3) After any choice q2 other than W by firm 2, firm 1’s choice must be sequentially

rational given its beliefs.

(4) Firm 2’s strategy σ1
2 must maximize its profits given σ1.

4. Suppose we are now in such an equilibrium. Consider the “worst” beliefs: firm 1 will

believe θ = 4 with probability 1 if he observes any behavior by firm 1 other than W . From

2σ1
2 (θ) describes 2’s choice about whether or not to wait, and if not what quantity. σ2

2 specifies 2’s choice
of quantity after waiting. σ1 (W ) means 1’s quantity choice if 2 waits and σ1 (q) if 2 does not wait and
chooses q.
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previous question, we know that if firm 2 deviates he will get the payoff of 2. To exclude

profitable deviation, (
8 + α

6

)2

≥ 2

needs to hold. It solves for

6
√
2− 8 ≤ α ≤ 1

Question 2. Selling a Firm.

The owner of a small firm is contemplating selling all or part of his firm to outside

investors. The profits from the firm are risky and the owner is risk averse. The owner’s

preferences over x, the fraction of the firm the owner retains, and p, the price “per share”

paid by the outside investors, are given by

u (x, θ, p) = θx− x2 + p (1− x)

where θ > 1 is the value of the firm (i.e., expected profits). The quadratic term reflects

the owner’s risk aversion. The outside investors are risk neutral, and so the payoff to an

outside investor of paying p per share for 1− x of the firm is then

θ (1− x)− p (1− x)

There are at least two outside investors, and the price is determined by a first price

sealed bid auction: The owner first chooses the fraction of the firm to sell, 1−x; the outside

investors then bid, with the 1− x fraction going to the highest bidder (ties are broken with a

coin flip).

1. Suppose θ is public information. What fraction of the firm will the owner sell, and how

much will he receive for it?

2. Suppose θ is privately known by the owner. The outside investors have common beliefs,

assigning probability α to θ = θ1 and probability 1 − α to θ = θ2 > θ1. Suppose

θ2 − θ1 > 2. Characterize one separating perfect Bayesian equilibrium of this game.

3. Now, instead of assuming that there are at least two investors, suppose that there is only

one investor. As a monopolist, this investor can offer a menu contract {p1, x1; p2, x2}to
maximize her expected profits. The outside option of the owner is such that the owner

can fully retain the firm (x = 1), and get utility θ − 1. Solve the optimal screening

contract proposed by the investor.
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Solution.

1. In a first sealed bid auction under public information, p = θ. Then the owner’s

problem becomes

max
x

u (x, θ, p) = θx− x2 + θ (1− x)

F.O.C. implies that x = 0. The owner will sell all of the firm and receive θ for it.

2. In the separating PBE, the owner chooses x = x1 when observing θ = θ1 and chooses

x = x2 when observing θ = θ2. The outside investor’s belief is µ (θ = θ1 | x = x1) = 1 and

µ (θ = θ1 | x = x2) = 0. Given this belief, the investor will choose p1 = θ1 when observing

x1 and p2 = θ2 when observing x2. Since θ1 is already the lowest possible price, type θ1 will

choose the full information x∗
1 = 0. The incentive compatibility constraint for θ1 is

θ1 ≥ θ1x2 − x2
2 + θ2 (1− x2) (1)

This implies

x∗
2 ≥

− (θ2 − θ1) +
√
(θ2 − θ1)

2 + 4 (θ2 − θ1)

2
≡ x̄

The incentive compatibility constraint for θ2 is

θ2x2 − x2
2 + θ2 (1− x2) ≥ θ1 (2)

which requires x2
2 ≤ θ2 − θ1. This trivially hold since x2 ≤ 1 and θ2 − θ1 > 2. Specify the

worst belief for off path quantities and thus p (x) = θ1 for x ̸= 0, x∗
2. We need

θ2x2 − x2
2 + θ2 (1− x2) ≥ max

x
θ2x− x2 + θ1 (1− x)

The solution to the RHS maximization problem is x∗ = min
{
1, θ2−θ1

2

}
. Suppose θ2−θ1 >

2. x∗ = 1 and we need to make sure that

θ2x2 − x2
2 + θ2 (1− x2) ≥ θ2 − 1 (3)

Thus any x2 ∈ [x̄, 1] is consistent with a separating PBE. There are also pooling equilibria,

where both types choose the same xp, with p (xp) = αθ1 + (1− α) θ2 ≡ θ̄. Again specify the

worst belief for off path quantities such that p (x) = θ1 for x ̸= xp. We need

θ1xp − x2
p + θ̄ (1− xp) ≥ θ1

5



3. The optimization problem for the owner is

max
{p1,x1;p2,x2}

α [θ1 (1− x1)− p1 (1− x1)] + (1− α) [θ2 (1− x2)− p2 (1− x2)]

s.t.



θ1x1 − x2
1 + p1 (1− x1) ≥ θ1 − 1 IR1

θ2x2 − x2
2 + p2 (1− x2) ≥ θ2 − 1 IR2

θ1x1 − x2
1 + p1 (1− x1) ≥ θ1x2 − x2

2 + p2 (1− x2) IC1

θ2x2 − x2
2 + p2 (1− x2) ≥ θ2x1 − x2

1 + p1 (1− x1) IC2

IR1 and IC2 could be redundant. Substituting IR2 and IC1 into the objective function

yields

max
{p1,x1;p2,x2}

α
[
θ1 − x2

1 − θ1x2 + 1− θ2 (1− x2)
]
+ (1− α)

[
1− x2

2

]
F.O.C. implies x∗

1 = 0

x∗
2 =

α(θ2−θ1)
2(1−α)

And p∗1 = −α(θ2−θ1)
2

2(1−α)
+ θ2 − 1

p∗2 = −α(θ2−θ1)
2(1−α)

+ θ2 − 1

Question 3. Monopoly Screening.

Consider the following optimal pricing (screening) problem with quality-differentiated

products. There is a continuum of consumers whose preferences are given by u = θv (q)−t (q)

where

v (q) =
1− (1− q)2

2

The proportion of consumers with high valuation θh is given by λ and the proportion of

consumers with low valuation θl is given by 1− λ. The monopolist has a constant marginal

cost equal to c of producing quality q, with 0 < c < θl < θh. If a consumer does not purchase,

she receives an outside option of 0.

1. Derive the monopolist’s optimal menu subject to the participation constraint of the

buyers, assuming for the moment that he can observe the type θ of the buyer.
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2. Suppose now that θ is not observable. Derive the monopolist’s optimal solution. Care-

fully specify conditions under which it is indeed optimal to choose both qh and ql to be

strictly positive.

3. Calculate the monopolist’s expected profits under both situations described in 1 and 2.

How does the reduction in expected profits due to asymmetric information change with

c and λ? Explain the intuition.

Solution.

1. Assume that the monopolist can observe the type of a buyer. The optimization problem

becomes

max
q(θ),t(θ)

t− cq

s.t. θv (q)− t ≥ 0

The optimal menu is

(q, t) =

(
1− c

θ
,
θ2 − c2

2θ

)
2. Assume that the monopolist cannot observe the type of a buyer. The optimization

problem becomes

max
qh,th,ql,tl

λ (th − cqh) + (1− λ) (tl − cql)

s.t.



θhv (qh)− th ≥ 0 IRh

θlv (ql)− tl ≥ 0 IRl

θhv (qh)− th ≥ θhv (ql)− tl ICh

θlv (ql)− tl ≥ θlv (qh)− th ICl

The buyers with high valuation have incentive to mimic those with low valuation. IRl

and ICh are binding while the other two are redundant. So the optimization problem can

be simplified as

max
qh,th,ql,tl

λ (th − cqh) + (1− λ) (tl − cql)

s.t.

θlv (ql)− tl = 0 IRl

θhv (qh)− th = θhv (ql)− tl ICh

7



The solution is given by q∗h = 1− c
θh

q∗l = 1− (1−λ)c
θl−λθh

To guarantee that q∗l > 0, we need λ < θl−c
θh−c

. Under this condition,t∗h = θh
2

(
1− c2

θ2h

)
− θh−θl

2

[
1− (1−λ)2c2

(θl−λθh)
2

]
t∗l =

θl
2

[
1− (1−λ)2c2

(θl−λθh)
2

]
3. The expected profits under situation 1 is

Eπ1 = λ

(
θ2h − c2

2θh
− c

(
1− c

θh

))
+ (1− λ)

(
θ2l − c2

2θl
− c

(
1− c

θl

))
= λ

(θh − c)2

2θh
+ (1− λ)

(θl − c)2

2θl

The expected profits under situation 2 is

Eπ2 = λ (t∗h − cq∗h) + (1− λ) (t∗l − cq∗l )

= λ

(
(θh − c)2

2θh
− θh − θl

2

[
1− (1− λ)2 c2

(θl − λθh)
2

])
+ (1− λ)

(
θl
2

[
1− (1− λ)2 c2

(θl − λθh)
2

]
− c

[
1− (1− λ) c

θl − λθh

])

The reduction

∆ = Eπ1 − Eπ2

= λ
θh − θl

2

[
1− (1− λ)2 c2

(θl − λθh)
2

]
+ (1− λ)

[
c2

2θl
+

(1− λ)2 c2θl

2 (θl − λθh)
2 − (1− λ) c2

θl − λθh

]
=

1

2 (θl − λθh) θl

[
λ (θh − θl) θl (θl − λθh)− λ (1− λ) c2 (θh − θl)

]
=

λ (θh − θl)

2 (θl − λθh) θl

[
θl (θl − λθh)− (1− λ) c2

]
=

θh − θl
2

λ

[
1 +

(1− λ) c2

(λθh − θl) θl

]
Since λ < θl−c

θh−c
,
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λθh − θl <
θl − c

θh − c
θh − θl

=
1

θh − c
((θl − c) θh − (θh − c) θl)

=
−c

θh − c
(θh − θl) < 0

Thus

∂∆

∂c
= (θh − θl)

(1− λ)λ

(λθh − θl) θl
c < 0

And

∂∆

∂λ
=

θh − θl
2

(
1 +

c2

θl

(1− 2λ) (λθh − θl)− (λ− λ2) θh

(λθh − θl)
2

)
=

θh − θl
2

[
1 +

c2

θl

(−θl + 2λθl − λ2θh)

(λθh − θl)
2

]
=

θh − θl

2 (λθh − θl)
2 θl

[
(λθh − θl)

2 θl + c2 (λ− 1) θl − c2λ (λθh − θl)
]

The sign of ∂∆
∂λ

depends on A , (λθh − θl)
2 θl + c2 (λ− 1) θl − c2λ (λθh − θl). Note that

∂A

∂λ
= 2 (λθh − θl) θhθl + 2c2 (θl − θhλ)

= 2 (λθh − θl)
(
θhθl − c2

)
< 0

and

A |λ=0= θ3l − c2θl =
(
θ2l − c2

)
θl > 0

9



A |
λ=

θl−c

θh−c

= (λθh − θl)
2 θl + c2 (λ− 1) θl − c2λ (λθh − θl)

=
[
(λθh − θl) θl − c2λ

]
(λθh − θl) + c2 (λ− 1) θl

=

[(
θl − c

θh − c
θh − θl

)
θl − c2

θl − c

θh − c

](
θl − c

θh − c
θh − θl

)
+ c2

(
θl − c

θh − c
− 1

)
θl

=
c2

(θh − c)2
[(θh − θl) θl + c (θl − c)] (θh − θl) + c2

(
θl − c

θh − c
− 1

)
θl

= −c2 (θh − θl)

(θh − c)2
(
θ2l + c2

)
< 0

So there exists some λ̄ ∈
(
0, θl−c

θh−c

)
such that when 0 < λ < λ̄, ∂∆

∂λ
> 0, and when

λ̄ < λ < θl−c
θh−c

, ∂∆
∂λ

< 0.

Intuition: When c becomes larger, the profit becomes smaller, so the value of information

becomes smaller. As λ → 0 or λ → 1, it approximates to the case with complete information.

So when λ gets larger, the effect of asymmetric information (reduction in expected profits)

first becomes more severe and then less severe.
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