
Math Camp Weeks 3 and 4:
Linear Algebra and Differentiation

University of Pennsylvania

Economics Department1

August 25, 2021

1These notes are the result of a collective effort by previous instructors of the second part
of the math camp, including Xincheng Qiu (2020-2021), Alejandro Sánchez (2017-2019), David
Zarruk (2014-2015) and Ju Hu (2012-2013). The majority of the proofs of the differentiation
section are adapted from Pugh (2010), Real Mathematical Analysis and Rudin (1976), Principles
of Mathematical Analysis. These notes are always growing and improving with the comments and
insights from our students. If you have any suggestions or see any typos, please email Xincheng
Qiu at qiux@sas.upenn.edu.

mailto:qiux@sas.upenn.edu


Contents

I Linear Algebra 7

1 Overview of Linear Algebra 8
1.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Linear Maps and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Extending Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Examples of Infinite Linear Maps . . . . . . . . . . . . . . . . . . . . 11

1.3 Matrices uniquely represent finite linear maps . . . . . . . . . . . . . . . . . 12
1.4 Operator norm for linear maps . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Cauchy-Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Operator Norm Inequality . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Application: Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7 Properties Appendix: Matrix Transpose . . . . . . . . . . . . . . . . . . . . 22
1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Image and Kernel 25
2.1 Simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Full rank matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Surjective Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Invertible Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Rank deficient matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Application: Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Properties Appendix: Block-Partitioned Matrices . . . . . . . . . . . . . . . 35
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Orthogonality 37
3.1 Vector Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Optimality of Approximate Solutions . . . . . . . . . . . . . . . . . . 39

1



3.2 Orthogonal Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Projection Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Computation of Full Rank Matrices . . . . . . . . . . . . . . . . . . . 43
3.3.2 Computation of Rank Deficient Matrices . . . . . . . . . . . . . . . . 45
3.3.3 Uniqueness of Projection Matrices . . . . . . . . . . . . . . . . . . . 46
3.3.4 Optimality and Non-Unique Approximate Solutions . . . . . . . . . . 47

3.4 Application: Detrending Data . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Projections of Block-Partitioned Matrices . . . . . . . . . . . . . . . 49

3.5 Properties Appendix: Inverse of the Transpose . . . . . . . . . . . . . . . . . 50
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Convex Sets (I): Hyperplanes 52
4.1 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Separating Points from Convex Sets . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Topology of Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Non-Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Strict Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.4 Weak Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Separating Two Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Operations on Convex Sets . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Weak Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Strict Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Convex Sets (II): Cones 66
5.1 Finite Cones are Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Finite Cones are Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Carathéodory’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Farkas’ Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Application: Financial Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Quadratic Forms 76
6.1 Positive (Semi) Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 Implications, Examples and Counter Examples . . . . . . . . . . . . 78

2



6.1.2 Cholesky Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.3 Partial Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Determinants 83
7.1 Characteristic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Vectorization and Continuity (Optional) . . . . . . . . . . . . . . . . . . . . 87
7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Eigenvalues and Eigenvectors 91
8.1 Review of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Eigenvectors and Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.2.1 Linear Independence and Diagonalizability . . . . . . . . . . . . . . . 93
8.2.2 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

II Differentiation 98

9 Introduction to Differentiation 99
9.1 Review of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 Definition of Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.3 Differentiability Implies Continuity . . . . . . . . . . . . . . . . . . . . . . . 104
9.4 First Order Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.5 Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.6 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.7 Properties Appendix: Equivalent Notions of Continuity . . . . . . . . . . . . 109
9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10 Mean Value Theorems 112
10.1 Mean Value Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.2 L’Hospital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.3 Derivatives of Monotone Functions . . . . . . . . . . . . . . . . . . . . . . . 115
10.4 Inverse Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.5 Application: Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.5.1 Economic Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.5.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 119

3



10.5.3 Existence Interior Solution . . . . . . . . . . . . . . . . . . . . . . . . 120
10.5.4 First Order Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11 Taylor Expansion 123
11.1 Polynomial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.2 Recursive Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 126
11.3 Taylor Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.3.1 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11.3.2 Uniqueness of the Approximation . . . . . . . . . . . . . . . . . . . . 130
11.3.3 Form of the Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.4 Continuous Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.5 Application: Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11.6 Properties Appendix: Common Strategies . . . . . . . . . . . . . . . . . . . 135
11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

12 First-Order Differentiation in Rn 137
12.1 Definition Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

12.2.1 Differentiation of Vector Valued Functions . . . . . . . . . . . . . . . 140
12.3 Special Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

12.3.1 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.3.2 Mean-Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 142

12.4 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

13 Second-Order Differentiation in Rn 147
13.1 Bilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.2 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
13.3 Second-Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.4 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
13.5 Taylor’s Expansion Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
13.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

14 Comparative Statics 156
14.1 Contraction Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 157

14.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4



14.1.2 Unique Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
14.2 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
14.3 Proof of Implicit Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . 161
14.4 Application: Savings under Uncertainty . . . . . . . . . . . . . . . . . . . . 163

14.4.1 Convex Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 164
14.4.2 FOC + Implicit Function Theorem . . . . . . . . . . . . . . . . . . . 165
14.4.3 Absolute Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . 167

14.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

15 Concavity (Convexity) 170
15.1 Set Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

15.1.1 Strict Concavity (Convexity) . . . . . . . . . . . . . . . . . . . . . . 172
15.1.2 Conic Combinations of Concave Functions . . . . . . . . . . . . . . . 172

15.2 Derivative Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
15.2.1 First Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
15.2.2 Second Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

15.3 Special Topological Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 177

16 Quasiconcavity 178
16.1 Set Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

16.1.1 Strict Quasi Concavity (Quasi Convexity) . . . . . . . . . . . . . . . 179
16.2 Derivative Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
16.3 Conic Combinations Not Quasiconcave . . . . . . . . . . . . . . . . . . . . . 181
16.4 Concavity and Quasi-Concavity . . . . . . . . . . . . . . . . . . . . . . . . . 182

III Answer Key 183

17 Suggested Solutions 184
17.1 Overview of Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
17.2 Image and Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
17.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
17.4 Convex Sets (I): Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . 194
17.5 Convex Sets (II): Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
17.6 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
17.7 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
17.8 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5



17.9 Introduction to Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 210
17.10Mean Value Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
17.11Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
17.12First-Order Differentiation in Rn . . . . . . . . . . . . . . . . . . . . . . . . 217
17.13Second-Order Differentiation in Rn . . . . . . . . . . . . . . . . . . . . . . . 219
17.14Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6



Part I

Linear Algebra
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Chapter 1

Overview of Linear Algebra

1.1 Matrices
Let n,m ≥ 1 be two integers. A matrix is a two-dimensional array of numbers in R. A
vector is an array that has a single column.

A :=


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
... ... ... . . . ...
am1 am2 am3 · · · amn

 , x :=


x1

x2
...
xn


Sometimes we abbreviate the notation for this matrix by writing it as (aij), i = 1, · · · ,m
and j = 1, · · · , n. We say that it is an m by n matrix, or an m × n matrix. The matrix
has m rows and n columns. If m = n, we call it a square matrix. We can define the
multiplication of a matrix times a vector. Let Am be the mth row of the matrix.

Ax :=


A1x

...
Amx

 =


∑n

j=1 a1jxj
...∑n

j=1 amjxj

 , x ∈ Rn

The resulting array Ax is a vector in Rm. A linear combination of two vectors, x,y ∈ Rn is
defined as

w = αx+ βy :=


αx1 + βy1

...
αxn + βyn
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where α, β ∈ R are scalars. The resulting array is also a vector in Rn. Each coordinate is
weighted and added separately, that is wj = αxj + βxj.

Multiplication of two matrices can be defined analogously. Let B be a n × K matrix
whose columns b1, . . . , bK are n× 1 vectors.

AB :=


A1b1 · · · A1bK

... · · · ...
Amb1 · · · AmbK

 =


∑n

j=1 a1jbj1 · · ·
∑n

j=1 a1jbjK
... · · · ...∑n

j=1 amjbj1 · · ·
∑n

j=1 amjbjK


Each column of the resulting matrix AB is Abk, 1 ≤ k ≤ K.

We say that a matrix (or vector) is zero matrix (vector) when all its entries are zero.
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1.2 Linear Maps and Matrices
We will focus on a particular type of function called a linear map.

Definition 1.2.1. A function T : Rn → Rm is a finite linear map if

T (αx+ βy) = αT (x) + βT (y)

for all vectors x,y ∈ Rn and scalars α, β ∈ R.

In this section we lay the groundwork to prove that all finite linear maps have the form
T (x) = Ax, where A is an m × n matrix. Clearly not all functions are linear maps. For
example, given the function T (x) = x2, x ∈ R, we know that T (αx + βy) = (αx + βy)2 =

α2x2 + 2αβxy + β2y2. This is not equal to αT (x) + βT (y) = αx2 + βy2 for all values of x, y
and α, β.

1.2.1 Extending Definition

First we need to prove an intermediate lemma. Our objective is to show that a linear map
applies to multiple linear combinations, not just pairwise combinations.

Lemma 1.2.1. T (x) is a finite linear map if and only if for any finite integer K,

T

(
K∑
k=1

αkx
(k)

)
=

K∑
k=1

αkT (x
(k))

for all αk ∈ R,x(k) ∈ Rn.

Proof. Proving (⇐= ) follows straight from the definition of a linear map by taking K = 2.
Proving ( =⇒ ) is the novel part. Many proofs in linear algebra proceed by induction, so
it is helpful to become familiarized with the technique. We know that the results holds for
K = 2. Assume that it holds for some k∗ ≥ 2, that is:

T

(
k∗∑
k=1

αkx
(k)

)
=

k∗∑
k=1

αkT (x
(k)).
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Now we will prove that it also holds for k∗ + 1.

T

(
k∗+1∑
k=1

αkx
(k)

)
= T

(
k∗∑
k=1

αkx
(k) + αk∗+1x

(k∗+1)

)
By decomposing sum inside function

= T

(
k∗∑
k=1

αkx
(k)

)
+ αk∗+1T (x

(k∗+1)) By definition of a linear map

=
k∗∑
k=1

αkT (x
(k)) + αk∗+1T (x

(k∗+1)) By hypothesis in the inductive step

=
k∗+1∑
k=1

αkT (x
(k)). Grouping terms

Therefore we have shown that the result holds for any finite integer K. Notice that in the
second line we use the definition of a linear map. We plug in weights α = 1 and β = αk

∗+1,
choosing vectors x =

∑k∗

k=1 αkx
(k) and y = x(k∗+1) according to our previous definitions.

1.2.2 Examples of Infinite Linear Maps

The notion of linear map can be extended beyond the Euclidean space, such as function
spaces. In this case it is more common to call a linear map an operator rather than a func-
tion. What are examples of function spaces? The set of polynomials, the set of continuous
functions, etc. (all of which have an infinite number of elements). We will only focus on
the Euclidean space, but it is worth commenting that function operators emerge in many
economic applications such as nonparametric econometrics.

Example 1. Let f, g be two differentiable functions and let f ′, g′ be their derivatives,
and let T be the differentiation operator. Let T (f) = f ′ and let T (g) = g′. Then T is a
linear map because T (αf + βg)(x) = αf ′(x) + βg′(x) = αT (f)(x) + βT (g)(x). This is the
known rule that the derivative of a linear combination two functions is a linear combination
of the derivatives.

Example 2. Let f, g be two functions and define the integral operator as T (f) =∫
f(x)dx. The integration operator is a linear map because T (αf + βg) =

∫
(αf(x) +

βg(x))dx = α
∫
f(x)dx+ β

∫
g(x)dx = αT (f) + βT (g).
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1.3 Matrices uniquely represent finite linear maps
Linear maps and matrices are the core of linear algebra. We will show that matrices uniquely
represent linear maps by breaking down the result into two lemmas (a common strategy for
a representation theorem). First, if we are given a matrix A we can show that a function of
the form T (x) = Ax is indeed a linear map. Second we will show if a function T is a linear
map, then we can construct a unique matrix A such that T (x) = Ax.

Lemma 1.3.1. T (x) = Ax is a linear map.

Proof. Let w = αx + βy. We apply the definition of multiplication of a matrix times a
vector.

T (w) = Aw =


∑n

j=1 a1jwj
...∑n

j=1 amjwj


Then we can substitute each coordinate separately and decompose the above expression as
a sum of two vectors:

Aw =


∑n

j=1 a1j(αxj + βyj)
...∑n

j=1 amj(αxj + βyj)

 =


∑n

j=1 a1jαxj
...∑n

j=1 amjαxj

+


∑n

j=1 a1jβyj
...∑n

j=1 amjβyj


The scalars α, β multiply each element of the respective vector. Therefore, we can pull it
out as a common term.

Aw = α


∑n

j=1 a1jxj
...∑n

j=1 amjxj

+ β


∑n

j=1 a1jyj
...∑n

j=1 amjyj


Each vector satisfies the definition of matrix multiplication, Ax and Ay, respectively. There-
fore we have shown that Ax is a linear map, since

T (αx+ βy) = T (w) = Aw = αAx+ βAy = αT (x) + βT (y).

Now we will show that the set of m× n matrices provides an exhaustive representation
of all linear maps.
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Lemma 1.3.2. For every finite-dimensional linear map T there exists a unique matrix A
such that T (x) = Ax, for all x ∈ Rn.

Proof. We will proceed by constructing the matrix A. We start off by proposing a candidate
matrix representation Ax evaluated at a finite number of points. To complete the proof we
need to show that T (x) = Ax for all x ∈ Rn.

Our candidate points will be the set of elementary basis vectors e1, · · · , en. The jth

vector has a 1 on coordinate j and 0, otherwise. We provide an illustration for n = 3, but
the proof applies to any dimension.

e1 =

 1

0

0

 , e2 =

 0

1

0

 , e3 =

 0

0

1


Notice that any vector can be represented as a linear combination of elementary basis vectors,
because x = x1e1 + . . . + xnen. We will construct our matrix A as follows. We give an
illustration for the case that m = 2 and n = 3.

A =

 ↑ · · · ↑
T (e1) · · · T (en)

↓ · · · ↓

 =

(
a11 a12 a13

a21 a22 a23

)

For example, aj = T (ej) is a an m× 1 vector, containing coordinates (a1j, . . . , amj). Notice
that m is not necessarily equal to n. Now let x be any arbitrary vector in Rn.

Ax =


∑n

j=1 a1jxj
...∑n

j=1 amjxj

 =
n∑
j=1

xjaj =
n∑
j=1

xjT (ej)

Notice that from the extended definition of a linear map,

n∑
j=1

xjT (ej) = T

(
n∑
j=1

xjej

)
= T (x)

where x =
∑n

j=1 xjej. Therefore, T (x) can be represented using the matrix A. To prove
uniqueness assume that there exists another matrix B such that T (x) = Bx, with at least
one column such that bj 6= aj. However, that means bj 6= T (ej) and therefore Bej 6= T (ej),
which is a contradiction.

The above lemma is significant because it means that to understand the properties of

13



linear maps we can study m× n matrices without loss of generality.
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1.4 Operator norm for linear maps
The euclidean norm of a vector x in Rn is defined as:

||x|| =
√
x21 + x22 + . . .+ x2n =

√
xtx

In theoretical analysis it is also convenient to define a norm for a function, the so-called
“operator norm”. For example, it will allow us to show that the function T (x) = Ax is
continuous. As we know, continuity is a desirable property for functions because it means
that “small” disturbances in x will lead to small disturbances in Ax, and we can invoke
many theorems in real analysis.

A generic challenge in defining an operator norm is that a function can be evaluated at
multiple points (in fact, any point in Rn) but we are only interested in summarizing the
norm with a single scalar. How do we reduce this dimensionality? There are two generic
solutions to this problem: (1) define a weighting scheme to aggregate the points; (2) consider
the extremes. We will follow the latter, using a definition sometimes called the “maximum
stretch”:

||T || := sup
x∈Rn:||x||=1

||T (x)|| (Operator norm) (1.1)

Example:

A =

[
5 0

0 1

]
, ||Ax|| =

√
(5x1)2 + x22

Different values of x lead to different norms ||Ax|| in the target space. Which is the
largest one? If we do not restrict the space of x, we could take x1, x2 to infinity and therefore
the norm would be unbounded. However, if we restrict attention to vectors that have unit
norm we obtain a finite supremum. In this case it is possible to verify that ||T || = 5. (Try
verifying this on your own. A diagram might help!) This is the “maximum” amount we can
“stretch” a vector of unit length from the domain to the range.

1.4.1 Cauchy-Schwarz Inequality

We first restrict attention to the case with n × 1 matrices (i.e. vectors). We will prove the
well-known Cauchy-Schwarz (CS) inequality, which is of interest in its own right and will
make the proof for general matrices considerably simpler. Our objective will be to impose
bounds on how much a vector can be “stretched” by a matrix.

Definition 1.4.1. The inner product of two vector v,x ∈ Rn is the scalar vtx.

15



The CS inequality states that the absolute value of the inner product is bounded by the
multiplication of the norms.

Theorem 1.4.1 (Cauchy-Schwarz Inequality). Suppose that v,x ∈ Rn. Then:

|vtx| ≤ ||v|| ||x|| (Cauchy Schwarz Inequality)

Sometimes the (CS) inequality is given a geometric interpretation. For instance, in two
dimensions vtx = ||v|| ||x|| cos(θ), where θ is the angle between the vectors. The inner
product is a measure of how closely aligned two vectors are. When they are parallel, θ = 0,
and the equation in the lemma becomes an equality.

The proof only uses the fact that a norm is non-negative (an inequality) which gives rise
to the (CS) inequality by using a clever substitution.

Proof. Let λ ∈ R and construct a vector z = v − λx. Since ||z||2 ≥ 0 and ||z||2 =

(v − λx)t(v − λx), it follows that

vtv − 2λvtx+ λ2xtx ≥ 0

Assume WLOG that x 6= 0. Consider a particular λ = vtx
(xtx)

,1 thus

vtv − 2
(vtx)2

(xtx)
+

(vtx)2

(xtx)
≥ 0

We can rearrange the above terms to show that (vtx)2 ≤ (vtv)(xtx). Since vtx = ||vtx||
(scalar) and vtv = ||v||2,xtx = ||x||2 it follows that ||vtx||2 ≤ ||v||2||x||2. The result follows
by taking the square root on both sides.

1.4.2 Operator Norm Inequality

The operator norm of finite linear maps has two very useful properties, it is finite and we
can define a Cauchy-Schwarz inequality.

Lemma 1.4.1. Let A be an m× n matrix. If T (x) = Ax, then

1. ||T || <∞ (Finite operator norm)

2. ||T (x)|| ≤ ||T || ||x|| for all x ∈ Rn. (Operator Cauchy-Schwarz Inequality)
1Notice that this value of λ minimizes the quadratic equation on the left-hand-side.
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Before we proceed with the proof, notice that the Cauchy-Schwartz inequality is a special
case in which A = vt.

In the general case we can also provide a geometric interpretation. The ratio of the
norms ||T (x)||/||x|| is the amount that the input vector is “stretched” by the linear map T .
Therefore, the operator norm ||T || is the maximum amount that a vector can be “stretched”.
Informally, the first part of the lemma states that finite linear maps cannot “stretch” vectors
too much.

Proof. We will show the first property. Let Aj be the jth row vector of the matrix A. Recall
that by the definition of matrix multiplication, that if z = Ax, then zi = Aix (a scalar).
This means that the norm of z is:√√√√ m∑

i=1

z2i =

√√√√ m∑
i=1

||Aix||2

Then we can use the Cauchy-Schwarz Inequality:

||T (x)|| =

√√√√ m∑
i=1

||Aix||2 ≤

√√√√ m∑
i=1

||Ai||2 ||x||2

Consider the restriction that ||x|| = 1, then the expression simplifies to ||T (x)|| ≤ C =√∑m
i=1 ||Ai||2. The quantity C < ∞ because m,n are finite: we know that ||Ai|| < ∞ and

that there is a finite number of finite terms in the sum. This means that the supremum is
bounded by a finite quantity.

To show the second part we use the scalar property of the Euclidean norm: ||αz|| = α||z||,
for all z and for all non-negative α ∈ R (verify this as an exercise).

If x in nonzero, then we can normalize it in order to ensure that it has unit norm, that
is x̃ = x

||x|| . Then by definition of the operator norm, which is a supremum overall all unit
vectors, ||Ax̃|| ≤ ||T ||. To complete the proof it suffices to multiply either side by ||x|| and
using the scalar property of the Euclidean norm:

||Ax|| = ||Ax̃|| ||x|| ≤ ||T || ||x||, ∀x ∈ Rn\{0}

where the first equality holds by rewriting

Ax = Ax̃ ||x||
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and using the scalar property by taking α = ||x|| and z = Ax̃ .
Finally we need to make sure that the inequality also holds when x is equal to zero. This

does indeed hold because ||A(0)|| = 0 and the right hand side is also zero.

Remarks 1: We proved the lemma by only using the fact that the matrix A has finite
dimensions. In the remainder of the course we will impose stronger assumptions on the
matrices (e.g. invertibility, orthogonality, etc.) and it is important to emphasize that these
properties are not necessary for the operator norm to be finite.

Remmark 2: Which linear maps do not have a finite operator norm? Some linear maps
on functions spaces (though not all) instead of the Euclidean space. When the space has an
infinite number of elements the main argument of our proof (finiteness) does not hold.
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1.5 Continuity
In order to prove continuity of linear maps we will define a metric from the Euclidean norm.

d(x,y) = ||x− y||

Our objective in this section is to build up on the properties of the operator norm that
we define in the previous section, in order to prove continuity of finite linear maps. The
intuition of this result is as follows. A finite ||T || means that each vector in the domain is
not “stretched” too much by the linear map. This means that “small” perturbations in the
domain have “small” perturbations in the range.

Definition 1.5.1. A function T (x) is continuous at point x ∈ Rn, if ∀ϵ > 0 there exists
δ > 0 such that if y ∈ Rn and d(x,y) < δ, then d(T (x), T (y)) < ϵ.

We can now show that finite linear maps are continuous. It is worth emphasizing that
this result has minimal assumptions, and does not depend on the specific form of the matrix
A, just the fact that it has finite dimensions.

Theorem 1.5.1. If T (x) = Ax then T is continuous.

Proof. Fix ϵ > 0. Notice that d(T (x), T (y)) = ||Ax−Ay|| = ||A(x−y)||. Define w = x−y
and apply the Cauchy-Schwartz inequality in Lemma 1.4.1.

||A(x− y)|| ≤ ||T || ||x− y|| < ϵ

Since ||T || is finite, then as long as d(x,y) = ||x− y|| < ϵ/||T ||, the above inequality holds.
We complete the proof by picking δ = ϵ/||T ||.
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1.6 Application: Markov Chains
Consider the following situation. At time 0, there is a population of individuals split between
two states (e.g. two cities), with proportions x1, x2 ∈ [0, 1] that up to one, x1 + x2 = 1. At
time 1, some individuals decide to remain in each city (p11, p22, respectively) while others
decide to migrate to the neighboring city (p12, p21, respectively). The process continues for T
periods. The proportion of the population in each state, xit for i ∈ {1, 2}, t ∈ 0, . . . , T forms
a Markov chain. The term Markov refers to the fact that the state at time t + 1 only
depends on the proportions at t and the transition probabilities, but not periods t−1, t−2, . . ..
See Figure 1.1 for an illustration of this process.

1

2

1

2

Initial
State

Final
State

𝑝𝑝11

𝑝𝑝12

𝑝𝑝21

𝑝𝑝22

𝑥𝑥1

𝑥𝑥2

Proportion
in state

Proportion
in state

𝑝𝑝11𝑥𝑥1 + 𝑝𝑝21𝑥𝑥2

𝑝𝑝21𝑥𝑥1 + 𝑝𝑝22𝑥𝑥2

Figure 1.1: A finite markov chain

Linear algebra can help us answer important questions about Markov chains. What is
the proportion of individuals in each state at time t? As T → ∞, is there a stationary
population in each state? Under what conditions? If there is a stationary state, does it
depend on the initial distribution? To develop full answers to these questions we will need
to develop more tools throughout the next chapters.

Finite markov chains (i.e. those with a finite number of states) can be represented using
a stochastic matrix.

Definition 1.6.1. An n×n matrix P is a stochastic matrix if its entries are non-negative
and the sum of the entries in each column adds up to one, Pij ≥ 0,

∑
i Pij = 1.

Definition 1.6.2. A n× 1 vector x is a probability vector if its entries are non-negative
and add up to one, xi ≥ 0,

∑
i xi = 1.

It can be verified from the definition that the columns of a stochastic matrix are proba-
bility vectors. If P is a stochastic matrix and xt is a vector of individuals in each state at
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time t, then we can represent the process in Figure 1.1 as a law of motion:

xt+1 = Pxt

By recursive substitution we can show that:

xt = Pxt−1 = P (Pxt−2) = · · · = P tx0

This makes it easier to analyze this type of markov chains because it means that we only
need to understand the properties of the matrix P . We can also show that P t is also a
stochastic matrix.

Lemma 1.6.1. Assume that P is a stochastic matrix, then

1. If the vector has x ∈ Rn is a probability vector, then y = Px is also a probability
vector.

2. P t is a stochastic matrix.

Proof. We will prove the first part. By the definition of matrix multiplication yi =
∑n

j=1 Pijxj.
Since all the entries of the sum are non-negative, then yi ≥ 0. Furthermore,

∑n
i=1 yi =∑n

i=1

∑n
j=1 Pijxj. We can rearrange this sum so that:

n∑
i=1

yi =
∑
j=1

xj

n∑
i=1

Pij =
∑
j=1

xj = 1

That shows that y is a probability vector (entries are non-negative and add up to one).
Now we will prove the second part by induction. First we show the result for t = 2. By

the definition of the multiplication of two matrices.

P 2 =

 ↑ · · · ↑
Pp1 · · · Ppn

↓ · · · ↓


By the first part of the lemma, since pj is a probability vector then so is Ppj. The columns of
P 2 are all probability vectors therefore P 2 is stochastic. Now assume that P t is stochastic.
Using the first part of the lemma P tpj is a probability vector, 1 ≤ j ≤ n. That means
that P t+1 is also stochastic. This completes the induction argument, showing that P t is a
stochastic matrix.
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1.7 Properties Appendix: Matrix Transpose
Let A be an m× n matrix, with entries [Aij]. With this notation, define matrix addition as
[(A + B)ij] := [Aij + Bij] and matrix multiplication as [(AC)ij] = [

∑n
l=1 ailclj] for matrices

Bm×n and Cn×k.

Definition 1.7.1. The transpose of a matrix A is an n×m matrix with entries [Aji], which
we denote At.

Definition 1.7.2. A matrix A is said to be symmetric if At = A.

A =

[
1 5 8

2 6 0

]
, At =

1 2

5 6

8 0


Lemma 1.7.1. Let A,B be m× n matrices, C an n× k matrix and λ a scalar.

1. (Involution Property) (At)t = A.

2. (Additive Separability) (A+B)t = At +Bt.

3. (Multiplicative Separability) (AC)t = CtAt.

4. (Scalar multiplication) (λA)t = λAt.

5. (Transpose of scalar) At = A if m = n = 1.

6. (Bilinear form) (A+B)t(A+B) = AtA+ AtB +BtA+BtB.

Proof of Properties. .

1. By definition [Atij] = [Aji]. Applying the definition again, we get [(At)tij] = [Atji] =

[Aij].

2. By definition [(A+B)t]ij = [(A+B)ji] = [Aji +Bji] = [Atij +Bt
ij].

3. By definition [AC]ij := [
∑n

l=1 ailclj], where cj are the columns of c. Then [(AC)tij] =

[(AC)ji] = [
∑n

l=1 ajlcli] = [
∑n

l=1C
t
ilA

t
lj] = [(CtAt)ij].

4. By definition [(λA)ij] = [λAij] = λ[Aij].

5. If m = n = 1, [At11] = [A11].
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6. First apply additive separability, (A+B)t = At+Bt. Then use multiplicative separa-
bility of multiplication (At + Bt)(A + B) = At(A + B) + Bt(A + B) = AtA + AtB +

BtA+BtB.

23



1.8 Exercises
1. Suppose that T (x) = Ax and that F (y) = By, with Am×n and Bk×m.

(a) Show that G = F (T (x)) is also a linear map.

(b) Show that ||G|| ≤ ||F || ||T ||. Is the composite of two linear maps continuous?

(c) Assume that P is a square matrix. Use part (b) to show that for any non-negative
integer t, ||P t|| ≤ ||P ||t.

(d) Show that if x is a probability vector, then ||x|| > a for some a > 0.

(e) If P is a stochastic matrix, could it be ||P || < 1? What would this imply for our
migration example if it were true?

2. In this section you will expand some of the details of the proof of the Cauchy-Schwarz
inequality. Let λ ∈ R,v,x ∈ Rn. We know that if z = v − λz, ||z|| ≥ 0 , then

vtv − 2λvtx+ λ2xtx ≥ 0 (1.2)

(a) Show that the condition in Equation 1.2 is equivalent to:

inf
λ∈Rn
{ vtv − 2λvtx+ λ2xtx } ≥ 0, ∀v,x ∈ Rn

(b) Consider the case when ||x|| > 0. Use the fact that the function is quadratic in λ

to show that a minimum exists and that is

vtx

xtx
= argmin

λ∈Rn

{ vtv − 2λvtx+ λ2xtx }

(c) Show that if v = x, then Cauchy-Schwarz attains equality.
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Chapter 2

Image and Kernel

Let A be an m × n matrix and let T (x) = Ax. There are two main objects that we are
interested in concerning linear maps.1

Im(A) := {z ∈ Rm : ∃x ∈ Rn s.t. z = Ax}

Ker(A) := {x ∈ Rn : Ax = 0m×1}

which we denote the image and kernel of the linear map, respectively. Notice that the
image is a subset of the range of the function, whereas the kernel is a subset of its domain.
Moreover, remember that m is not necessarily equal to n. Therefore, they typically reside
in different spaces. However, we will show that they are related in other ways.

Other equivalent terms are used to describe these sets. The kernel is the set of solutions
to a homogenous system of equations (one where the right hand size is the zero vector).
The image of the linear map is also sometimes called the span of the columns of A.

2.1 Simple example
The image addresses what information is contained in A, whereas the kernel can help us
determine whether its columns contain redundant or unique information. For now we will

1It is important to note that the image and kernel are defined with respect to the function T and not the
matrix itself. However, because finite linear maps are uniquely represented by matrices by Lemma 1.3.2, we
will define Im(A) and Ker(A) rather than Im(T ) and Ker(T ) in order to streamline the notation.
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focus on the image because it is a little easier to analyze. Consider the following matrices

A =

 1 1

0 0

0 0

 , Ã =

 1

0

0


In econometrics, A could represent a data matrix with individuals in each row and variables
in each column. We say that the two columns in A are colinear because one can be expressed
as a linear combination of the other one. The usage in econometrics is identical to the one
in linear algebra. We can verify that Im(A) = Im(Ã), because

Ax =

 x1 + x2

0

0

 , Ãy =

 y1

0

0


where x ∈ R2 and y ∈ R1. The mapping defined by each matrix has a different domain but
their image is the same, a line in R3 along the first coordinate. The key idea is that since the
two columns are identical we can drop one of them and produce a linear map that contains
the same information about the image. In the econometrics example, it means that we do
not need to include the same variable twice.

On the other hand, the matrices A and Ã have a different kernel.

Ker(A) =

{[
α

−α

]
: α ∈ R

}
, Ker(Ã) =

{
0

}

The kernel always includes the zero vector because Am×n0n×1 = 0m×1 regardless of A. As
Ker(Ã) shows, when there is no redundant information, the kernel only contains that element
(we call this the trivial kernel). However, when the vectors are colinear the kernel is non-
trivial. As a matter of fact, if the kernel is not trivial it has infinite solutions, as shown in
Ker(A).
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2.2 Full rank matrices
As with other types of functions, linear maps have a unique solution (if it exists) when they
are one-to-one (injective). For finite-dimensional linear maps, we say that the matrix is full
rank.

Definition 2.2.1. A matrix Am×n is said to be full rank if T = Ax is one-to-one.

It is important to observe that not all full rank matrices are square (see example in the
previous section). One of the special things about a linear map is that many of its properties
can be obtained from its kernel.

Lemma 2.2.1. The linear map T : Rn → Im(A) is injective if and only if the kernel is
trivial, Ker(A) = {0n×1}.

Proof. ( =⇒ ) Suppose that T is one-to-one, then Ax = 0 has a unique solution, if it exists.
We know 0n is a solution since A0n = 0m, hence it is the only solution. This means that
the kernel exactly contains the zero vector.

(⇐= ) We will show this by contradiction. Suppose that Ker(A) = {0} and that T is not
one-to-one. Then there exists x 6= y such that Ax = Ay, which implies that A(x− y) = 0.
But this implies that (x− y) 6= 0 belongs to the kernel, which is a contradiction.

Lemma 2.2.1 gives a characterization of injective linear maps in terms of the kernel. A
kernel that contains a single element, the zero vector 0 ∈ Rn is sometimes called a trivial
kernel. This simplifies our task of identifying injective functions considerably. At this stage
we are focusing on understanding the high-level properties of the kernel because we are
interested in proving existence and constructive results. Later in the course we will discuss
practical (numeric) ways to test whether the kernel is trivial.

Corollary 2.2.1. The following implications follow from Lemma 2.2.1

1. If Ker(A) = {0n×1}, then all its columns are non-zero vectors.

2. If Ker(A) = {0n×1} and v ∈ Rm is not in the image of A, then Ker(a1, . . . , an, v) =

{0(n+1)×1}.

3. Ker(A) = {0n×1} if and only if each column vector aj is non-zero and cannot be
expressed as a linear combination of the other vectors, {a1, . . . , aj−1, aj+1, . . . , an},
1 ≤ j ≤ n.

The Corollary proves equivalent characterizations of trivial kernels.
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Proof. We can also prove the following implications of the theorem:

1. Suppose that Ker(A) = {0n×1}. Suppose by contradiction that some columns are
zero, and WLOG, say, that a1 is a zero vector. Then x = (α, 0, . . . , 0) is a solution
to Ax = 0, for any α ∈ R. That means that K(A) 6= {0} because it contains more
elements (at least x), which is a contradiction.

2. Suppose thatKer(A) = {0n×1}, v ∈ Rn is not in the image ofA, andKer(a1, . . . , an, v) 6=
{0(n+1)×1}. Then there exists β1, . . . , βn, βv not all zero, such that.

0m×1 = β1a1 + . . .+ βnan + βvv

The case βv = 0 and some non-zero (β1, . . . , βn) is not possible because then Ker(A) 6=
{0}. The case βv 6= 0 is also not possible because then v = −(β1/βv)a1−. . .−(βn/βv)an
and this contradicts the fact that v /∈ Im(A). Since this situation contradicts both
premises, it follows that Ker(a1, . . . , an, v) = {0(n+1)×1}.

3. ( =⇒ ) Suppose that Ker(A) = {0} and by the first part of the lemma, all the column
vectors of A have to be non-zero. Suppose that some column can be expressed as a
linear combination of the other vectors, WLOG, say, a1:

a1 = β2a2 + β3a3 + . . .+ βnan.

At least one βi, 2 ≤ i ≤ n is non-zero, otherwise a1 would zero (which is ruled out by
the first part of the lemma). We can rearrange this equation as

0m×1 = −a1 + β2a2 + β3a3 + . . .+ βnan

In matrix form that means that Ax = 0, where x = (−1, β2, β3, . . . , βn) and at least
one βi 6= 0. However, this means that x ∈ Ker(A) and therefore Ker(A) 6= {0n×1}, a
contradiction.

(⇐= ) Construct the matrix A sequentially by adding columns. Since a1 is non-zero,
A1 = a1 has a trivial kernel. Add each column sequentially. By assumption column
ak+1 cannot be expressed as a linear combination of the first k columns. Therefore
ak+1 /∈ Im(a1, . . . , ak) and we can apply the second part of the lemma. We can apply
this argument sequentially, ensuring that the kernel is trivial at each stage until we
have added all the columns.
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2.2.1 Surjective Maps

However, an injective function does not necessarily have a solution to the system Ax = b

for b ∈ Rm. The function is guaranteed a solution if it is both injective and Im(A) = Rm

(it is surjective over the Euclidean space). Otherwise, it only has a solution if b ∈ Im(A).
We prove an important lemma that allows us to assess whether a linear map is surjective or
not.

Lemma 2.2.2. Suppose that Am×n is full rank and that we have a matrix Wm×K, whose
columns, w1, . . . , wK are contained in Im(A). It follows that,

1. If K = n and W is full rank, then Im(W ) = Im(A).

2. If K > n, then W cannot be full rank.

The lemma states that all funk rank matrices that span the same space (have the same
image) necessarily have the same dimensions. If a full rank matrix spans a space we say that
the column vectors are a basis for the space. The basis for a space is not generally unique.
For example, scaling one of the columns leads to the same image. The rank of a space is
the number of columns of any basis that spans it. We use the convention that rank(A) = 0

if A is the zero matrix.
The second part of the lemma states that the number of columns is always greater than

or equal to the rank of the matrix. If a matrix has more columns than its rank then it is
necessarily rank deficient (not injective). This is a formal proof that a linear system with
more unknown than equations cannot have a unique solution, if it exists.

The proof of the lemma is interesting because it uses a recursive substitution argu-
ment. It starts of with the matrix A and substitutes each vector sequentially until we have
have shown that the image spanned by both basis is the same. At each step the image is
the same. We will use this type of argument in subsequent proofs because it useful to prove
existence of bases.

Proof of Lemma 2.2.2. Assume W is full rank. Let a1, . . . , an be the columns of A. Since
w1 belongs to the image of A,

w1 = β1a1 + · · ·+ βnan

There must exist some 1 ≤ i ≤ n such that βi 6= 0, otherwise w1 = 0 contradicting that W
is full rank. Assume without loss of generality, say it is β1. Hence

a1 =
1

β1
w1 −

β2
β1
a2 − · · · −

βn
β1
an.
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Construct a new matrix that substitutes a1 with w1. This implies that the image of the
new matrix is equal to the image of A, that is Im{w1, a2, · · · , an} = Im(A), because any
combination of the original vectors can be written indirectly in terms of {w1, a2, · · · , an}.
Since w2 ∈ Im(A), it is a linear combination of w1, a2, · · · , an:

w2 = γ1w1 + β′
2a2 + · · ·+ β′

nan.

Again, there must exist some 2 ≤ i ≤ n such that β′
i 6= 0 (using the fact that W is assumed

full rank). Without loss of generality, assume it is a2, then

a2 =
1

β′
2

w2 −
γ1
β′
2

w1 −
β′
3

β′
2

a3 − · · · −
β′
n

β′
2

an

This implies Im{w1, w2, a3, · · · , an} = Im(A). Continuing in this fashion, we can show
Im{w1, · · · , wn} = Im(A). This proves the first part of the lemma.

For the second part, if K > n and assume W is full rank. Consider a submatrix of W
with its first n columns W̃ = (w1, w2, ..., wn). From part one we know Im(W̃ ) = Im(A). By
assumption, wn+1 ∈ Im(A) = Im(W̃ ) and hence it is a linear combination of w1, · · · , wn,
which contradicts the assumption that Ker(W ) = {0} (i.e. full rank).

Example (Injective but not surjective linear maps).

A =

[
1

0

]
, y =

[
0

1

]

The linear map T (x) = Ax,x ∈ R is injective but it is not subjective on R2 because
y /∈ Im(A). As an exercise try to show that Lemma 2.2.2 implies that an injective map
cannot be surjective (Im(A) = Rm) if A is a non-square full rank matrix. (Hint: Assume
that the columns of W = Im×m are contained in Im(A)).

Example (Square matrix that is not injective).

A =

[
1 −1
−1 1

]
, x1 =

[
1

0

]
, x2 =

[
0

−1

]
.

We can verify that Ax1 = Ax2, which means that the function T (x) = Ax is not injective.
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2.2.2 Invertible Matrices

Lemma 2.2.3. If W is a full rank n×n matrix then there exists a unique matrix W−1 such
that W−1W = In.

Proof. This proof has two steps:

1. Show that the linear map T (x) = Wx is injective and surjective. That means that we
can define an inverse function T−1 : Rn → Rn for every element in Rn.

The fact that W is full rank guarantees that the function is injective. Now we will
show that full rank square matrix are also surjective. Consider the identity matrix
In×n. We know that Im(In×n) = Rn because every for every vector x ∈ Rn can be
written as x = In×nx. Clearly every column in W belongs to Im(In×n). We can apply
Lemma 2.2.2 to show that Im(W ) = Rn.

2. Show that the function T−1 is a finite linear map, because then we can apply the
representation theorem in Lemma 1.3.2 to show that there exists a matrix W−1 such
that T−1(y) = W−1y.

Choose two arbitrary n× 1 vectors y1,y2 ∈ Rn. Since T−1 is injective and surjective,
there exist unique vectors x1,x2 ∈ Rn such that y1 = Wx1 and y2 = Wx2. It follows
that αy1 + βy2 = αWx1 + βWx2 = W (αx1 + βx2) for all α, β ∈ Rn. This implies
that T−1(αy1 + βy2) = αx1 + βx2 = αT−1(y1) + βT−1(y2) (it is a linear map over
a finite domain and range). To complete the proof we use Lemma 1.3.2 to show that
there exists a unique matrix, denoted by W−1, such that T−1(y) = W−1y.
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2.3 Rank deficient matrices
Lemma 2.3.1. Let A be a m × n matrix such that Ker(A) 6= {0}. Then (i) there exists
an n× k full rank matrix, Ω, such that Ker(A) = Im(Ω). (ii) All the matrices Ω with this
property have the same dimensions.

Lemma 2.3.1 states the kernel of rank deficient (not full rank) matrices can be rep-
resented by a matrix. The proof follows a basis extension argument. Start the matrix
by choosing a non-zero vector in the kernel. Then sequentially add independent vectors (if
they exist). The proof doesn’t provide an algorithm for finding such vectors, although such
algorithms do exist. The essential part of the proof is to show that there cannot be more
than n independent vectors in the kernel, because Ker(A) ⊆ Rn. The second part of the
lemma says that every basis for the kernel has the same number of columns, which we call
dim(Ker(A)).

Proof. Since Ker(A) 6= {0} there exists a non-zero vector such that ω1 ∈ Ker(A). Con-
struct a candidate matrix Ω1 = ω1. First we show that Im(Ω1) ⊆ Ker(A). If x = αω1, α ∈ R
then x ∈ Ker(A) because Ax = A(αω1) = α(Aω1) = 0. Now suppose that we have con-
structed a full rank matrix Ωk with k column vectors whose image is contained in Ker(A),
that is:

Im(Ωk) ⊆ Ker(A), Ker(Ωk) = {0k×1}

If Im(Ωk) = Ker(A) then we are done. Otherwise, choose ωk+1 ∈ Ker(A) such that ωk+1 /∈
Im(Ωk). By Lemma 2.2.1 then the matrix Ωk+1 = {Ωk, ωk+1} (appending a column vector
on the right) also has a trivial kernel (is full rank). We also need to show that Im(Ωk+1) ⊆
Ker(A). Let x = (x1:k, xk+1) ∈ Rk, where x1:k = (x1, . . . , xk). Since Im(Ωk) ⊆ Ker(A), it
follows that AΩk+1x = AΩkx1:k +Aωk+1xk+1 = 0+ 0 = 0. Therefore, Im(Ωk+1) ⊆ Ker(A).

This process needs to stop eventually (i.e. Im(Ωk) = Ker(A) for some k). Suppose that
it doesn’t and that we are at a stage where k ≥ n and Ωk is full rank. Since Im(Ωk) ⊆ Rn =

Im(In) then by Lemma 2.2.2 if k > n, Ωk cannot be full rank, a contradiction. Hence, the
process needs to stop for some k ≤ n.

Now suppose that we choose two full rank matrices Ω1,Ω2 such that Im(Ω1) = Im(Ω2) =

Ker(A). They must have the same number of rows because they span the same space. Now,
WLOG assume that Ω1 has strictly more columns than Ω2. Since the columns of Ω1 belong
to Im(Ω2) then Lemma 2.2.2 implies that Ω1 is not full rank, a contradiction. Therefore,
both matrices must have the same number of columns.
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2.4 Application: Linear Regression
A researcher has access to a database with information about n individuals. There is a
vector of outcomes Y ∈ Rn, each entry represents the outcomes for different individuals.
There is a matrix with k explanatory variables Xn×k called the design matrix, with n > k

(there are more observations than variables). The relationship between the outcome and the
explanatory variables is given by:

Y n×1 = Xn×kβk×1 + ϵn×1

where ϵn×1 is a vector of unexplained error terms and β ∈ Rk is a vector of coefficients.
The researcher is interested in estimating the coefficient using the observed data to recover
some effect of interest. The researcher has established that he will use the least-square-
error criterion to compute the estimator (more details in later chapters) which leads to the
following first-order condition.

(X tX)β̂ = X tY (2.1)

The k × k square matrix X tX is called the gram matrix. By Lemma 2.2.3 the function
T (β̂) = (X tX)β̂ is injective and surjective as long as the gram matrix is full rank. This
guarantees that the estimator exists and is unique.

Lemma 2.4.1. Let X be an n× k matrix. Then (X tX) is full rank if and only if X is full
rank.

Proof. We will show that Ker(X tX) = Ker(X). Consequently, by Lemma 2.2.1, either
both matrices are full rank or neither of them is.

(⇐= ) Suppose that β ∈ Ker(X), then Xβ = 0n×1. That means that (X tX)β = 0k×1

and that β ∈ Ker(X tX).
( =⇒ ) Suppose that β ∈ Ker(X tX) then X tXβ = 0m×1. This also means that

βtX tXβ = 01×1 = (Xβ)t(Xβ) = ||Xβ||2. We know that a norm is equal to zero if and
only if the vector is zero. Therefore Xβ = 0n×1 and β ∈ Ker(X).

Lemma 2.4.1 states the gram matrix is full rank if and only if the design matrix is full
rank. The proof is interesting because it illustrates that two matrices can have the same
kernel even if they have a different number of rows (because the kernel is contained in the
domain, which depends only on the number of columns). Empirically the result is interesting
because it allows the researcher to asses the rank condition of X rather than the matrix X tX

which can be a more complicated object.
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Lemma 2.4.2. Let X be an n × k matrix with non-zero entries. (i) If X is not full rank
then we can construct a full rank matrix X∗ by dropping select columns of X, such that
Im(X) = Im(X∗). (ii) Suppose that A is a full rank matrix such that Im(A) = Im(X).
Then A has the same number of columns as X∗.

Proof. By Lemma 2.2.2 if X is not full rank, then at least one of its columns is zero and/or
can be expressed as a nonlinear combination of the others. Assume WLOG that it is the last
column. Suppose that we construct X∗ by dropping that column. Then xk = X∗ψ, where
xk is the last column and ψ is a (k − 1) × 1 vector. We show that Im(X∗) = Im(X). By
definition, Im(X∗) ⊆ Im(X) because there are fewer spanning vectors (we can always set
the last coefficient to zero). The difficult part is showing that Im(X) ⊆ Im(X∗). Suppose
that z ∈ Im(X), then there exists a β = (β1:(k−1), βk) ∈ Rk such that z = Xβ. We can
rewrite this as Xβ = X∗β1:(k−1) + xkβk and substitute in xk = X∗ψ,

X∗β1:(k−1) +X∗ψβk = X∗(β1:(k−1) + ψβk) ∈ Im(X∗)

This proves that Im(X∗) = Im(X). If the matrix X∗ is full rank then we are done. If it
is not we can repeat the process all over again. The process stops eventually because X is
non-zero, meaning that it has at least one non-zero column vector. That means that it is
indeed feasible to obtain a full rank matrix by dropping columns (in the extreme case we are
just left with one vector). The second part directly follows from Lemma 2.2.2.
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2.5 Properties Appendix: Block-Partitioned Matrices
Suppose that X is an m× n matrix. Then the matrix can be represented in block partition
form.

X =

[
Am1×n1 Bm1×n2

Cm2×n1 Dm2×n2

]
where m1+m2 = m and n1+n2 = n. The matrices A,B,C,D are submatrices of the column
X. In general, we could have more partitions of the matrix or less (only A and C, or only A
and B). The best way to partition a matrix depends on what the researcher wants to prove
about that matrix.

X =

[
1 2 3

4 5 6

]
=⇒ A =

[
1 2

]
, B =

[
3
]
, C =

[
4 5

]
, D =

[
6
]
.

For example:

X =

[
X1 X2

X3 X4

]
, Z =

[
Z1 Z2

Z3 Z4

]
Transpose

Notice that the transpose changes the position of the blocks.

X t =

[
X t

1 X t
3

X t
2 X t

4

]

Matrix Multiplication Suppose that X ∈ Rm × Rn and Z ∈ Rn × Rk. Furthermore
suppose that X1 ∈ Rm1 ×Rn1 and Z1 ∈ Rn1 ×Rk1 (matrices are conformable). Then we can
defined block partitioned multiplication.

XZ =

[
X1Z1 +X2Z3 X1Z2 +X2Z4

X3Z1 +X4Z3 X3Z2 +X4Z4

]
Matrix Addition Suppose that X,Z ∈ Rm × Rn. Furthermore suppose that X1 ∈

Rm1 × Rn1 and Z1 ∈ Rm1 × Rn1 (matrices are conformable). Then we can defined block
partitioned addition.

XZ =

[
X1 + Z1 X2 + Z2

X3 + Z3 X4 + Z4

]
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2.6 Exercises
1. Suppose that X is a non-zero m× n rank deficient matrix. Suppose that we partition

its columns X = [X1, X2] in such a way that Im(X1) = Im(X) and X1 is full rank.
The block matrices have n1, n2 columns, respectively. This is equivalent to dropping
redundant variables in a linear regression.

(a) Show that Equation 2.1 can be written in block-partitioned form as:[
X t

1X1 X t
1X2

X t
2X1 X t

2X2

]
β =

[
X t

1Y

X t
2Y

]

(b) Suppose that β̂1 = (X t
1X1)

−1(X t
1Y ). Construct a vector β∗ =

[
β̂1

0n2×1

]
. Show

that β∗ is a solution to Equation 2.1 if and only if X t
2X1β̂1 = X t

2Y .

(c) Verify that the columns of X2 belong in Im(X1). Use this fact to show that
X t

2X1β̂1 = X t
2Y .

(d) Consider the data matrix,

X =


1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

 , Y =


1

2

3

4

5


Construct X tX and X tY . Now partition the matrix into X1, X2 and compute
β∗. Verify that the results that you proved above are true for the following cases:

(i) Construct X1 using columns 1 and 2.
(ii) Construct X1 using columns 1 and 3.

(e) Is β∗ the same in both exercises? How can we interpret the result?

You can use the fact that the inverse of a 2× 2 matrix is given by:

A =

[
a11 a12

a21 a22

]
=⇒ A−1 =

1

a11a22 − a12a21

[
a22 −a12
−a21 a11

]
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Chapter 3

Orthogonality

In the previous chapter we studied the (full) rank of matrices, which determines whether
linear systems of equations have unique solutions, if they exist. Unfortunately, there are
many practical cases where exact solutions do not exist because the matrix is not surjective
over the Euclidean space. In this section, we will explore a novel property, orthogonality,
which will address the optimality of approximate solutions. The main takeaway of this
chapter is that linear systems of equations always have an “approximate” solution which is
unique if and only if the matrix is full rank. Therefore, the rank of the matrix continues to
play a central (and coherent) role in establishing uniqueness, even in this novel setting.

The second takeaway of this chapter is that the residuals of approximate solutions can
be characterized in terms of projection matrices, which are square matrices with well-
defined properties. In the application we combine projection matrices with the concept of
block-partitioning in order to gain new insights about multivariate linear regressions.

Our analysis starts with the definition of orthogonality.

Definition 3.0.1. A pair of vectors x,y ∈ Rn is orthogonal (x ⊥ y) if xty = 0. If in
addition, they have unit norm, ||x|| = ||y|| = 1, then they are orthonormal.

In R2 two vectors are orthogonal to each other if they are perpendicular to each other.
Orthogonality is the concept that generalizes this notion to higher dimensions.
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3.1 Vector Orthogonalization
In this section we address an issue of “orthogonalizing” a vector: transforming it so that it is
orthogonal to every vector in an auxiliary matrix. We deliberately use the same terminology
as the linear regression example in Section 2.4. We focus on full rank matrices first because
the results are constructive and will help us acquire intuition for proving similar existence
results in the general case.

Lemma 3.1.1. (Vector Orthogonalization) Let X be an m × n full rank matrix and
let y ∈ Rm. Define a vector of coefficients β∗ = (X tX)−1X ty ∈ Rn and define the residual
ε = y −Xβ∗ ∈ Rm. Then

1. εtX = 01×n.

2. Im(X, ε) = Im(X,y).

The vector ε is sometimes known as the residual, the difference between the original
vector y and a vector Xβ∗, the projection onto the image of X. Notice that the vector
β∗ is the solution to the system of equations for a linear regression in Section 2.4. Part 1 of
the lemma states that the resulting vector ε is pairwise orthogonal to all the columns of A.
Part 2 states that if a matrix has columns (X,y) then we can substitute the last column
with an “orthogonalized” residual and still span the same space. Intuitively, this says there
is no loss of information in “projecting out” its component in X. This will be important for
our theoretical analyses.

Proof. Since X is full rank, by Lemmas 2.4.1 and 2.2.3 X tX is invertible. Therefore β∗

exists and is well-defined.

(i) By definition εtX = (yt − β∗tX t)X. By definition of β∗ = (X tX)−1X ty we can
rewrite this as yt(I−X(X tX)−1X t)X. By expanding out the terms we can show that this
is equal to yt(X −X) = 01×n.

(ii) Since ε = −Xβ∗ + y it follows that ε ∈ Im(X,y). Similarly, since y = Xβ∗ + ε

it follows that y ∈ Im(X, ε). That means that any vector linear combination of X and y

can be expressed indirectly in terms of X and ε, and vice versa. Therefore, Im(X, ε) =

Im(X,y).
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3.1.1 Optimality of Approximate Solutions

In cases where the system of equations y = Xβ does not have a solution we can define an
optimality criterion based on the squared norm of the residual vector (also known as the
residual sum of squares or SSR).

SSR(β) = ||y −Xβ||2

We will prove that a unique minimizer exists when X is full rank. We can also show that
if X is not full rank a (necessarily non-unique) minimizer exists but in order to do so, we
need results from the next sections. We start off with the case of full rank matrices because
they can help us develop the intuition of what are the key elements that we need for the
general case. Furthermore, the full rank case is of interest in its own right for econometric
applications.

Define ŷ = Xβ∗ as our candidate prediction vector using the coefficients β∗ = (X tX)−1X ty

that we outlined in the previous section. Then we can decompose vector y into two compo-
nents that are orthogonal: (i) one that is linearly spanned (modeled) by the regressors X

and (ii) the other that cannot be linearly modeled by X, a residual ε = y − ŷ.

y = ŷ︸︷︷︸
Projection

+ (y − ŷ)︸ ︷︷ ︸
OrthogonalProjection

Lemma 3.1.2. Let X be an m× n full rank matrix and let y ∈ Rm. Define ε and β∗ as in
Lemma 3.1.1. Then

1. SSR(β) = εtε+ (β∗ − β)tX tX(β∗ − β).

2. β∗ is the unique minimizer of SSR(β).

Proof. We can rewrite the y − Xβ by adding and subtracting Xβ∗. This leads to an
expression, (y−Xβ∗)+ (Xβ∗−Xβ). The first term does not depend on β (the object over
which we want to minimize), which we called ε. We can further group the matrix in the
second term. Then we can rewrite the expression as y −Xβ = ε−X(β∗ − β). We can use
this to rewrite an interpretable expression for SRR(β).
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SSR(β) = ||ε+X(β∗ − β)||2 Plug in y −Xβ

= (ε+X(β∗ − β))t(ε+X(β∗ − β)) Rewriting using transpose
= εtε+ εtX(β∗ − β) + (β∗ − β)tX tε+ (β∗ − β)tX tX(β∗ − β) Expanding
= εtε− 2εtX(β∗ − β) + (β∗ − β)tX tX(β∗ − β) Grouping terms
= εtε+ (β∗ − β)tX tX(β∗ − β) Applying Lemma 3.1.1

Notice that εtX(β∗ − β) is a scalar. Therefore it is equal to its transpose, using Lemma
1.7.1. Therefore, from lines 3 to 4 we use the fact that εtX(β∗ − β) = (β∗ − β)tX tε. From
lines 4 to 5 we apply the result in Lemma 3.1.1 stating that εtX = 01×n.

The term εtε is an error component that does not depend on the choice of β. It captures
the lack of fit of the model overall, even if we choose an optimal approximate solution. The
only terms that matters for the optimization is the second term, which can be rewritten as:

(β∗ − β)tXTX(β∗ − β) = (X(β∗ − β))t(X(β∗ − β))

= ||X(β∗ − β)||2

The norm ||X(β∗ − β)||2 is equal to zero if and only if X(β∗ − β) = 0m×1. Since X is full
rank, there is a unique solution β = β∗. Therefore, β∗ is the unique minimize of SSR(β).
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3.2 Orthogonal Spaces
In linear algebra it is convenient to think of sets that have a particular property. Previously
we analyzed two important sets, the image and the kernel. Now we will analyze a third
important object called the orthogonal set.

Orthog(A) = Im(A)⊥ := {y ∈ Rm : ytz = 0, ∀z ∈ Im(A)}

Lemma 3.2.1. Let A be an m× n matrix, then Im(A) ∩Orthog(A) = {0m×1}.

Proof. Suppose that x ∈ Rm is non-zero. Then xtx > 0. If x ∈ Orthog(A) then xta = 0

for all a ∈ Im(A). Furthermore, if x ∈ Im(A) then xtx = 0, which is a contradiction.
To complete the proof we need to verify that 0m×1 is indeed part of the intersection. The

vector 0 ∈ Im(A) because A0n×1 = 0m×1. It is also part of Orthog(A) because 0tm×1y = 0

for any y ∈ Rm including those contained in Im(A).
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3.3 Projection Matrices
Projection matrices arise often in econometrics and in other linear systems with approximate
solutions. They allow us to decompose a vector in the Euclidean space into a component
that is projected onto the image of a matrix and a component that belongs to its orthogonal
complement. Lemma 3.3.1 proves a characterization of projection matrices that is easier to
verify in practice, which we will use in subsequent proofs.

Definition 3.3.1. Let A be an m × n matrix. Then the matrix P is a projection matrix
onto Im(A) if for all z ∈ Rm,

Pz ∈ Im(A) ⊆ Rm, (I − P )z ∈ Orthog(A) ⊆ Rm

Definition 3.3.2. Let A be an m×m matrix.

(a) The matrix A is idempotent if AA = A.

(b) The matrix A is symmetric if At = A.

Lemma 3.3.1. Let A be an m×n matrix and let P be an m×m matrix. If Im(P ) = Im(A)

then P is a projection matrix onto A if and only if P is idempotent and symmetric.

Proof. ( =⇒ ) Suppose that P is a projection matrix. Then for all z ∈ Rm, Pz ∈ Im(A) and
(I −P )z ∈ Orthog(A). By definition of the orthogonal set we have zt(I −P )tPz regardless
of the choice of input vectors. That means that (I−P )tP = 0m×m. Rearranging the equation
we get that P = P tP . The matrix is symmetric because P t = (P tP )t = P tP = P . Using
the fact that it is symmetric, we can show that it is also idempotent because P = P tP = PP .

( ⇐= ) Now suppose that Im(P ) = Im(A), together with the condition that P is
idempotent and symmetric. Since Im(P ) = Im(A), then for all z ∈ Rm, Pz ∈ Im(A).
Furthermore, for every a ∈ Im(A) there exists a x ∈ Rm such that Px = a. Let z ∈ Rm,
then at(I − P )z = xtP t(I − P )z = 0 since P t(1 − P ) = 0m×m. This follows directly from
idempotency and symmetry: P t − P tP = P − PP = P − P = 0m×m. That means that
(I − P )z is orthogonal to every element a ∈ Im(A), and therefore (I − P )z ∈ Orthog(A).
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3.3.1 Computation of Full Rank Matrices

Projection matrices can be computed directly for full rank matrices.

Lemma 3.3.2. If A is an m × n full rank matrix then P = A(AtA)−1At is a projection
matrix onto Im(A).

Proof. We will verify that P satisfies the conditions of 3.3.1.
First we show that the matrix is symmetric and idempotent. Using Lemma 3.5.1,

((AtA)−1)t = ((AtA)t)−1. We also use Lemma 1.7.1 to show that (AtA)t = At(At)t = AtA.
Therefore P t = A(AtA)−1At = P , and therefore our candidate matrix is symmetric. It is
also idempotent because PP = A(AtA)−1AtA(AtA)−1At which is equal to A(AtA)−1At = P

by canceling some of the terms.
Second, we show that Im(P ) = Im(A).

(i) Im(P ) ⊆ Im(A): Let x ∈ Rm. Therefore Px = Az, where z = (AtA)−1Atx ∈ Rn, is
contained in Im(A).

(ii) Im(A) ⊆ Im(P ): Suppose that z ∈ Im(A) ⊆ Rm, then there exists a x ∈ Rn such
that Ax = z. Then

Pz = A(AtA)−1Atz (Substituting definition of P )
= A(AtA)−1AtAx (Since z ∈ Im(A))
= Ax (Cancelling out terms)
= z (Plugging-in definition of z)

That means that z ∈ Im(P ). Therefore, Im(A) ⊆ Im(P ).

To conclude the proof we apply Lemma 3.3.1 to show that our candidate matrix P is a
projection matrix onto A.

Proof. Here is a more basic proof using the definition for a projection matrix. We will verify
two things: ∀z ∈ Rm, (i) Pz ∈ Im(A), (ii) (I − P )z ∈ Orthog(A).

(i) Plugging in the expression, we have

Pz = A(AtA)−1Atz = Aw,

where w := (AtA)−1Atz, and hence Pz ∈ Im(A).
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(ii) Now we want to show (I − P )z ∈ Orthog(A). Consider an arbitrary element in
Im(A), Ax. We have

((I − P )z)t(Ax) = zt(I − P )Ax = zt(A− A(AtA)−1AtA)x = 0.

Combining (i) and (ii), we have shown that P = A(AtA)−1At is indeed a projection
matrix onto Im(A).
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3.3.2 Computation of Rank Deficient Matrices

If the matrix A is not full rank we cannot use the formula in Lemma 3.3.2 directly. Fortu-
nately, we can formulate a more general theorem with minor modifications.

Theorem 3.3.1. Let A be an m× n matrix.

(a) If A is the zero matrix, P = 0m×m is a projection matrix onto Im(A).

(b) If A is a non-zero matrix, then there exists an m × k full rank matrix B such that
Im(B) = Im(A). Furthermore, for any B with this property, P = B(BtB)−1Bt is a
projection matrix onto Im(A).

The second part of Theorem 3.3.1 is particularly interesting because it says that we can
construct projection matrices in a simple way from rank deficient matrices. It suffices to
construct a full rank matrix that spans the same space. One simple alternative is to drop
certain columns that are linear combinations of the others.

Proof. (a) If A is the zero matrix, then Im(A) = {0m×1}. If P = 0m×m then it is (i)
Symmetric, P t = 0m×m = P , (ii) Idempotent, PP = 0 = P , and (iii) Im(P ) = {0} =
Im(A). Therefore, using Lemma 3.3.1 we show that P is a projection matrix unto
Im(A).

(b) If A is a non-zero matrix, then by Lemma 2.4.2 there exists a full rank matrix B such
that Im(B) = Im(A). The intuition is that we can always drop certain columns to make
a matrix full rank and still span the same space.

Now choose an arbitrary B that satisfies this property. Using Lemma 3.3.2, P is a
projection matrix onto Im(B) with the property that Pz ∈ Im(B) and (I − P )z ∈
Orthog(B). We know that Im(B) = Im(A). To complete the proof we just need to
show that Orthog(B) = Orthog(A). If w ∈ Orthog(B) ⊆ Rm then for any b ∈ Im(B)

we have wtb = 0. Since Im(B) = Im(A) then w ∈ Orthog(A). We can use a similar
argument to show that if w ∈ Orthog(A) then it also belongs in Orthog(B). Therefore,
P is a projection matrix onto Im(A).
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3.3.3 Uniqueness of Projection Matrices

Lemma 3.3.3. Let A be an m× n matrix.

(a) For each x ∈ Rm there exist unique vectors a, b ∈ Rm such that (i) x = a + b. (ii)
a ∈ Im(A) and b ∈ Orthog(A).

(b) If P is a projection matrix onto Im(A) then it is the unique.

Proof. (a) First we prove that such vectors exist. Define P as in Theorem 3.3.1. Then for
x ∈ Rm define a = Px ∈ Im(A) and b = (I − P )x ∈ Orthog(A). We can verify that
a+ b = Px+ (I − P )x = x. This shows that such vectors exits.

To prove uniqueness, assume that there exist alternative vectors a′, b′ with the same
properties. Then x = a + b = a′ + b′. We can rewrite this as a − a′ = b′ − b. Since
a,a′ ∈ Im(A) the left-hand side belongs in Im(A). Since, b, b′ ∈ Orthog(A) the right-
hand side belongs in Orthog(A). However, by Lemma 3.2.1, Im(A)∩Orthog(A) = {0}.
That means that a = a′ and b = b′.

(b) Suppose that there exist two matrices P, P ′ such that for all x ∈ Rm, then Px, P ′x ∈
Im(A) and (I − P )x, (I − P ′)x ∈ Orthog(A). Then by the first part of the lemma
Px = P ′x and (I − P )x = (I − P ′)x. Since x is arbitrary, then P = P ′. To prove this
set x = ej (an elementary basis vector) and use the fact that Pej = pj = p′j = P ′ej for
j ∈ {1, . . . ,m}, where pj, p′j are the jth columns of P, P ′, respectively.
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3.3.4 Optimality and Non-Unique Approximate Solutions

Corollary 3.3.1. Let X be an m× n matrix. The residual sum of squares SSR(β) always
has a minimizer. It is unique if and only if X is full rank.

Proof. We can rewrite the problem as:

min
β
||y −Xβ||2 = min

z∈Im(X)
||y − z||2

Then we can use Lemma 3.3.3 to rewrite decompose y into its projections, a ∈ Im(X) and
b ∈ Orthog(X) such that y = a+ b. We can expand the equation as:

||y − z||2 = ||b+ (a− z)||2

= btb+ 2bt(a− z) + (a− z)t(a− z)

= btb+ (a− z)t(a− z)

= btb+ ||a− z||2

Therefore the minimizer is z = a. The system a = Xβ has a unique solution if and only if
X is full rank.
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3.4 Application: Detrending Data
A researcher has access to a database with information about a series of an economic variable
over T time periods. There is a vector of outcomes Y ∈ RT , with outcomes for different
time periods. There are two sets of regressors: (i) A T × k1 matrix X1 which contain the
main variables an interest and (ii) a T × k2 of control variables. For example, the control
matrix could include a single variable with a trend X2t = t, where t ∈ {1, . . . , t} where t is
the time period of each observation.1 To ensure that our results have unique solutions, we
assume that the joint design matrix X = [X1, X2] is full rank.

The researcher is debating between different regression specifications, which both use
the least-squares optimality criterion analyzed in Lemma 3.1.2. We use β̂, ψ̂1 and ψ̂Y to
denote the solution to the optimality criterion and non-hat symbols to denote the “generating
model”. We are only interested in these solutions, and just provide the generating model for
context.

Example 1 (Additional Trend Regressor). A regression with both the main variables and

the controls, with associated parameters β =

[
β1

β2

]
where β1 ∈ Rk1 and β2 ∈ Rk2,

Y = X1β1 +X2β2 + e =⇒ (X tX)β̂ = X tY (3.1)

Example 2 (Detrended Regression). Two-step procedure:

1. First detrend the regressors and the outcome by running two auxiliary regressions
(i) X1 on X2 and (ii) Y on X2. Let ψ1, ψY ∈ Rk2 be vectors that solve,

X1 = X2ψ1 + u1 =⇒ (X t
2X2)ψ̂1 = X t

2X1

Y = X2ψY + uY =⇒ (X t
2X2)ψ̂Y = X t

2Y

Compute the detrended variables (residuals) (i) Main Regressors: Û 1 = X1 −X2ψ̂1

and (ii) Outcome: ÛY = Y −X2ψ̂Y .

2. Run a second regression using the detrended variables:

ÛY = Û 1β1 + ẽ =⇒ (Û
t

1Û 1)β̃1 = Û
t

1ÛY (3.2)

1The trend is just an example to give economic context, for our algebra results the matrix X2 is unre-
stricted. Another meaningful example is the “fixed effects model” in panel data. In that case the researcher
has access to information from multiple time periods and individuals. She includes a dummy variable for
each individual (capturing an individual-specific effect across time periods);
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3.4.1 Projections of Block-Partitioned Matrices

Define the projection matrices P := X(X tX)−1X and P2 := X2(X
t
2X2)

−1X2. Define the
residual-making matrices M := I − P and M2 := I − P2. We can rewrite the residuals
of the regression specifications more succinctly in terms of the projection matrices. Suppose
that we substitute in the definition of ψ̂1 and ψ̂Y .

Û 1 = X1 −X2(X
t
2X2)

−1X2X1 =⇒ Û 1 =M2X1

ÛY = Y −X2(X
t
2X2)

−1X2Y =⇒ ÛY =M2Y

This means that β̃ can be written as β̃ = (X t
1M

t
2M2X1)

−1(X t
1M

t
2M2Y ). In the exercises

you will prove that β̃1 = β̂1. The conclusion is that both regression specifications (adding
trend as regressor or detrending) yield numerically the same estimator of the main effects.
As an input you will need the following lemma.

Lemma 3.4.1. The matrices P, P2,M,M2 satisfy the following properties.

1. P, P2,M,M2 are idempotent and symmetric.

2. PP2 = P2 and MP2 = 0T×T .

Proof. The result has two parts:

1. By Lemma 3.3.2 we know that P, P1 are idempotent and symmetric. We show that M
is also idempotent and symmetric. The proof is analogous for M2.

(a) (Idempotency) By definition MM = (I − P )(I − P ). We can construct expand
out the sum as I − 2P + PP . Since P is idempotent, PP = P and the expression
simplifies to MM = I − P =M .

(b) (Symmetry) By definition M t = (I −P )t, which we can expand as (I −P t). Since
P is symmetric, P t = P and M t = I − P =M .

2. By construction X2 ∈ Im(X) (each column vector is in the image). Since P is
a projection matrix onto Im(X), then PX2 = X2. We can plug-in the definition
of P2 so that PP2 = PX2(X

t
2X2)

−1X2. Substituting PX2 = X2 then PP2 =

X2(X
t
2X2)

−1X2 = P2. The second result follows by plugging-in the definition:
MP2 = (I − P )P2 = P2 − PP2 which is equal to MP2 = P2 − P2 = 0T×T .
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3.5 Properties Appendix: Inverse of the Transpose
Lemma 3.5.1. Let A be a full rank m×m matrix. Then At is invertible and (At)−1 = (A−1)t.

Proof. If A is full rank then there exists a matrix A−1 such that A−1A = I. Transpose on
both sides, At(A−1)t = I t = I. Then (A−1)t is the inverse of At.
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3.6 Exercises
1. In this exercise you will prove a version of the Frisch-Waugh-Lovell Theorem (Greene,

2012) in the detrending example.

(a) Prove that β̃1 = (X t
1M2X1)

−1(X t
1M2Y ).

(b) Show that the system in Equation 3.1 can be written in block-partition form as:[
X t

1X1 X t
1X2

X t
2X1 X t

2X2

][
β̂1

β̂2

]
=

[
X t

1Y

X t
2Y

]

(c) Show that second row can be rewritten as β̂2 = (X t
2X2)

−1(X t
2Y −X t

2X1β̂1).

(d) Plug the above result into the first row of equations and show that (X t
1M2X1)β̂1 =

(X t
1M2Y ). Conclude that β̂1 = β̃1.

2. In the detrending example:

(a) Show that X full rank implies that X1 and X2 are full rank.
(Hint: Prove by contradiction)

(b) Define B = M2X1. Show that replacing X1 with the matrix B does not change
the image, i.e. Im(X1,X2) = Im(B,X2).
(Hint: Modify Lemma 3.1.1)

(c) Show that if X is full rank then (X t
1M2X1) is full rank. (Hint: Review Linear

Regression Section)
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Chapter 4

Convex Sets (I): Hyperplanes

4.1 Convex Sets
Convex sets feature prominently in microeconomic theory. For example they are used to
represent consumers’ preference for diverse bundles of goods. They capture the idea that
consumers prefer to consume a balanced amount (convex combination) of two goods rather
than have too much of a single one. Similarly, budget sets can be expressed as a particular
type of convex sets: a hyperplane. If two allocations are within a person’s budget then a
combination of them (rearranging the proportions) is also in her budget. In this case convex
sets capture the feasibility of an allocation.

Therefore it is of central importance to microeconomic theorists to understand how goods
are allocated given a budget set (hyperplane) and a set of preferences (a convex set). The
main theorems that we develop in this chapter are about the existence of hyperplanes.
In economics the hyperplane theorems have wide applicability in proving the existence of
equilibria and optimal solutions.

In this chapter we focus on proving a set of basic properties of convex sets. We revisit
three types of sets from real analysis (the interior, the boundary and the complement of the
closure). We will prove a hyperplane theorem for each case. The statement is relatively
similar (with minor differences in the assumptions and the results), so it useful to know how
and why each assumption is used.

Definition 4.1.1. A set X ⊆ Rn is convex if

λx+ (1− λ)x′ ∈ X ∀x, x′ ∈ X , ∀λ ∈ [0, 1]
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Figure 4.1: Examples

Definition 4.1.2. The vector xλ ∈ Rn is called a convex combination of vectors x1, . . . , xK ,
if xλ =

∑K
k=1 λkxk and λk ∈ [0, 1],

∑
k λk = 1.

Lemma 4.1.1. A set X ⊆ Rn is convex if and only if every convex combination xλ of K
vectors x1, . . . , xK ∈ X is contained in the set, i.e. xλ ∈ X , for any positive integer K.

Proof. (⇐= ) Set K = 2 and it follows by definition.
( =⇒ ) We will prove this direction by induction. If K = 1 then xλ = x which belongs

to X by definition. Now, suppose that it holds for some finite K. Our objective is to show
it holds for K + 1. Let λ1, . . . , λK+1 be scalar in the unit interval that add up to one.
If λK+1 = 1 then we are done because xK+1

λ is a convex combination of a single vector.
Otherwise, assume that 0 ≤ λK+1 < 1. We can rewrite the convex combination as:

xK+1
λ = (1− λK+1)

(
1

1− λK+1

K∑
k=1

λkxk

)
+ λK+1xK+1

Define xKλ := 1
1−λk+1

∑K
k=1 λkxk belongs to X . We can show that λk

1−λK+1
≥ 0 and that

1
1−λK+1

∑K
k=1 λk = 1. Therefore, it follows that xKλ is a convex combination of K vectors

and by the induction step, it belongs to X . Finally to complete the proof, xK+1
λ = (1 −

λK+1)x
K
λ + λK+1xK+1 which is contained in X by the definition of a convex set.
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4.2 Hyperplanes
Hyperplanes are useful building blocks to characterize certain sets in economic theory. For
example, suppose that there are n goods with prices pj, 1 ≤ j ≤ n. The consumer decides
to purchase a quantity xj of each good. Then her total expenditure can be expressed as
ptx =

∑
j=1 pjxj. Moreover, total expenditure needs to be less than or equal to her level of

wealth. If ptx = w then she is spending all her budget, but the feasible set1 is characterized by
ptx ≤ w. We will prove a set of existence results for the existence of separating hyperplanes.

Definition 4.2.1. Let p ∈ Rn\{0n×1} and w ∈ R. The set

H(p, w) = {x ∈ Rn : ptx = w}

Definition 4.2.2. Let X ,Y ⊆ Rn. Then

1. X and Y are weakly separated by H(p, w) if

ptx ≥ w

w ≥ pty
, ∀x ∈ X , ∀y ∈ Y

2. The sets are separated if one inequality is weak but the other is not.

3. The sets are strictly separated if both inequalities are strict.

Figure 4.2: Types of Separation of Convex Sets

1In practical models there is also a constraint that the quantities consumed need to be non-negative.
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4.3 Separating Points from Convex Sets

4.3.1 Topology of Convex Sets

We will focus our attention on the Euclidean space, which is a complete metric space. We
define B(x, ϵ) as an open ball with center x and radius ϵ.

Definition 4.3.1. A point x ∈ X ⊆ Rn is an interior point if there exists an ϵ > 0 s.t.
B(x, ϵ) ⊆ X . We define int(X ) as the set of all interior points of X , which we call the
interior of the set.

Definition 4.3.2. A point x ∈ X ⊆ Rn is a limit point if there exists a sequence xk ∈ X
such that xk → x. We define X the set of all limit points of X , which we call the closure
of the set.

Definition 4.3.3. The boundary of a set X ⊆ Rn is defined as ∂X := X \ int(X ).

A few relations between the definitions hold for all sets. For example, int(X ) ⊆ X every
interior point is contained in the set. Furthermore, X ⊆ X because if x ∈ X we can always
define a sequence xk = x. It also follows that a set is open if all its points are interior and
closed if it contains all its limit points. It can be shown that if X is open then X = int(X)

and if X is closed then X = X. See (Rudin et al., 1964) for more details.

Figure 4.3: Example of the interior, boundary and closure.

By construction the sets int(X ), ∂X and XC (the complement of the closure) are mutually
disjoint and their union is equal to the entire Euclidean space, Rn = int(X ) ∪ ∂X ∪ XC .
That means that the three sets comprise an exhaustive list of cases that we will explore in
our hyperplane theorems.

Lemma 4.3.1. The interior int(X ) and closure X of a convex set X are also convex.

Lemma 4.3.2. If X is a convex set, pick x ∈ X and y ∈ int(X ), then λx + (1 − λ)y ∈
int(x), ∀λ ∈ (0, 1).
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Lemma 4.3.3 (Topological Equivalences on Convex Sets). Let X ⊆ Rn be a convex
set, then (i) int(X ) = int(X ) and (ii) ∂X = ∂X .

Proof. (i) Since X ⊆ X , the direction int(X ) ⊆ int(X ) is straightforward. Let us prove the
other direction int(X ) ⊆ int(X ). Pick z ∈ int(X ). By definition, there exists ϵ such that
B(z, ϵ) ⊂ X . We want to show that z ∈ int(X ). From the previous lemma we know that, if
we could write z = λx+ (1− λ)y, for some x ∈ X , y ∈ int(X ), λ ∈ (0, 1), then we are done.
So we are going to construct such a convex combination representation for z. Equivalently,
we are looking for x = 1

λ
z − 1−λ

λ
y with the above restrictions.

Pick y ∈ int(X ). We want to pick λ to guarantee that x ∈ X . Notice that ||x − z|| =
1−λ
λ
||z − y||. Let us pick λ = 1

1+ϵ/(2||z−y||) , then ||x − z|| = ϵ
2
< ϵ, and hence x ∈ B(z, ϵ)

and therefore x ∈ X . Note that now we have constructed a λ ∈ (0, 1) together with a point
y ∈ int(X ) and a point x ∈ X , such that z = λx + (1 − λ)y. By the previous lemma, we
have z ∈ int(X ).

(ii) By definition we have ∂X = X\int(X ). Using result in (i), we know it is also equal
to X\int(X ), which by definition is ∂X .

The interior, closure and boundary are particularly useful in convex analysis because
they are easier to analyze than other types of sets. Intuitively, Lemma 4.3.3 formalizes the
idea that a convex set does not have any holes “inside” the set.

Figure 4.4: Example with convex and non-convex sets.

Here is a numerical counterexample that shows convexity is important in the result.
Consider

X = (−1, 0) ∪ (0, 1),

which is not a convex set. The closure of X is X = [−1, 1]. But int(X ) = (−1, 0) ∪ (0, 1)

while int(X ) = (−1, 1).

56



4.3.2 Non-Existence

Lemma 4.3.4. Suppose that X ⊆ Rn and that d ∈ int(X ). Then there does not exist a
non-zero vector p ∈ Rn such that ptx ≥ ptd, ∀x ∈ X .

Proof. Proof by contradiction. Suppose that exists a non-zero vector that separates X and
d. Construct a new vector x∗ = d − λp. Then ||x∗ − d|| = ||λp|| = |λ|||p||. On the other
hand, since the point d is interior there exists an open ball of radius ϵ and center d such that
Bd,ϵ ⊆ X . Set λ < ϵ

||p|| then x∗ ∈ B(d, ϵ) ⊆ X .
It follows that ptx∗ = pt(d − λp) = ptd − λptp. The above quantity is strictly less than

ptd because ptp = ||p||2 > 0 by assumption. Therefore there does not exist a separating
hyperplane.

We can actually strengthen this result to extend to sets with minor changes.

Corollary 4.3.1. Suppose that X ,Z ⊆ Rn and there is a vector d ∈ X ∩ Z such that
d ∈ int(X ) . Then there does not exist a non-zero vector p ∈ Rm such that ptx ≥ ptz for all
x ∈ X , z ∈ Z.

Proof. By Lemma 4.3.4 there does not exist a non-zero vector p such that ptx ≥ ptd. Since
d ∈ Z there does not exists a hyperplane that separates the sets.

Figure 4.5: Separating hyperplanes do not exist between a point in the interior of the set and the
rest of the set. This also holds for two sets, if they intersect at an interior point of one of the sets.
This applies in general, not only to convex sets.
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4.3.3 Strict Separation

Lemma 4.3.5. Let X ⊆ Rn be a non-empty and closed and d /∈ X . Then there exists a
minimizer x∗ = argminx∈X ||x− d||2. Furthermore, the vector p = x∗ − d is non-zero.

Proof. If the set X is bounded, set A = X . If not, define a set A(r) := B(d, r)∩X . Choose
0 < r∗ < ∞ such that A(r∗) 6= ∅, and set A = A(r∗). A finite r∗ is guaranteed to exist
because X is nonempty. Since X is closed and B(d, r∗) is closed and bounded in Rn, then
A is compact.

Define a function f(x) := ||x − d||2, which measures the square distance between d and
a point in the set X . The function f is continuous. Since A is compact and non-empty we
can use the extreme value theorem to show that the function has a unique minimizer on the
set, x∗ = argminx∈A f(x). This is the closest point to d on the set A. We can also show
that this is the closest point in all of X . By definition f(x) > r∗2 ≥ ||x∗−d||2 for all x in the
set AC ∩ X . Therefore ||x − d||2 ≥ ||x∗ − d||2 for all x contained in X . Defining the set A
is a necessary intermediate step to be able to use the extreme value theorem, which is only
stated for compact sets.

Theorem 4.3.1. Let X ⊆ Rn be a non-empty, convex set and d /∈ X̄ . Then there exists a
hyperplane H(p, w) that strictly separated X and {d}. That is,

ptd < w and w < ptx, ∀x ∈ X

Proof. We prove our results initially for X̄ , which ensures the existence of a minimum
distance point x∗ ∈ X̄ in the preceding lemma, because X̄ is closed. Our results will apply
to X because X ⊆ X̄ .

Define the vector p := x∗ − d and the convex combination xλ = λx∗ + (1− λ)x for some
λ ∈ [0, 1], x ∈ X̄ . Since the set X̄ is convex (see exercise) then xλ ∈ X̄ , which in turn
implies that ||xλ − d||2 ≥ ||x∗ − d||2, ∀λ ∈ [0, 1]. This inequality will be the basis for the
hyperplane separation, which is also an inequality. We can readily verify that xλ − d =

λ(x∗ − d) + (1 − λ)(x − d), which is equal to λp + (1 − λ)(x − d). Therefore, we can use
Lemma 4.3.5 to rewrite the inequality.

λ2||p||2 + 2λ(1− λ)pt(x− d) + (1− λ)2||x− d||2 ≥ ||p||2, λ ∈ [0, 1]

We can subtract ||p||2 from both sides. Notice that (λ2− 1)||p||2 = −(1+λ)(1−λ)||p||2. We
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can rearrange the inequality and divide by (1− λ) as

−(1 + λ)||p||2 + 2λpt(x− d) + (1− λ)||x− d||2 ≥ 0, ∀λ ∈ [0, 1)

The inequality is not defined for λ = 1 because then we cannot divide by (1 − λ). Now
suppose that we take a sequence λk ∈ [0, 1) such that λk → 1. We use the property that
limits preserve weak inequalities2:

−2||p||2 + 2pt(x− d) ≥ 0

Therefore, pt(x − d) ≥ ||p||2 > 0. That means that ptx > ptd for all x ∈ X̄ . This ptx > ptd

for all x ∈ X since X ⊆ X̄ . To complete the proof set w = ptd+ ||p||2
2

.

Corollary 4.3.2. Let X ⊆ Rn be a non-empty, closed, convex set and d /∈ X . Then there
exists a hyperplane H(p, w) that strictly separated X and {d}. That is,

ptd < w and w < ptx, ∀x ∈ X

Proof. If X is closed, then X̄ = X and we can apply the strict separating hyperplane
theorem directly for the case when d /∈ X .

2We can also write our set of inequalities as g(λ) ≥ 0 where g is a quadratic function whose coefficients
depend on constants ||p|| and ||x − d||. Then limλ→1 g(λ) ≥ 0. The left-hand side converges because g is
continuous.

59



4.3.4 Weak Separation

Theorem 4.3.2. Suppose X ⊆ Rn is a non-empty convex set, d /∈ int(X ). Then there exists
a non-zero p ∈ Rn such that ptx ≥ ptd, ∀x ∈ X .

Proof. Recall that int(X )C = ∂X ∪ X̄C . If x ∈ X̄C then we can apply Theorem 4.3.1 and
obtain a strict separating hyperplane. Since strict separation implies weak separation.

Suppose that d ∈ ∂X . By using Lemma 4.3.3 if X is a convex set then ∂X = ∂X̄ . That
means that d ∈ ∂X̄ . We will initially prove the theorem for X̄ . This implies that for any
integer n there exists a vector dn /∈ X̄ such that ||d−dn|| ≤ 1

n
(if it didn’t exist then x would

belong to the interior of X̄ ). By Theorem 4.3.1, for every integer n there exists a non-zero
pn such that

ptn(x− dn) > 0, ∀x ∈ X̄

Unfortunately, we cannot be sure that pn converges. Let us transform the vector to ensure
that p̃n = pn/||pn|| has unit length. Since ||pn|| > 0 then we can divide the inequality on
both sides:

p̃tn(x− dn) > 0, ∀x ∈ X̄

The set of vectors of unit length is compact (closed and bounded). Therefore, there exists a
convergent subsequence such that p̃nk

→ p̃. By construction p̃ is of length one and therefore,
non-zero. Furthermore, since dn converges to d, it follows that every convergent subsequence
also converges, including dnk

. We can take limits on both sides

lim
k→∞

p̃tnk
(x− dnk

) > 0, ∀x ∈ X̄

p̃t(x− d) ≥ 0, ∀x ∈ X̄

The inequality is weak because limits only preserve weak inequalities. To complete the proof
notice that X ⊆ X̄ . Therefore,

p̃t(x− d) ≥ 0, ∀x ∈ X
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4.4 Separating Two Convex Sets

4.4.1 Operations on Convex Sets

Definition 4.4.1. Let C(A) := {Xα ⊆ Rn : α ∈ Z} be an arbitrary (finite or infinite)
collection of sets indexed by a α ∈ A ⊆ Z. Define the intersection of the sets in the
collection as ⋂

α∈A

Xα := {x ∈ Rn : x ∈ Xα, ∀α ∈ A}

Lemma 4.4.1. If C(A) is a collection of convex sets. If
⋂
α∈AXα non-empty then it is

convex.

Proof. Suppose that we choose x, x′ ∈
⋂
α∈AXα (which is non-empty by assumption).

Choose an arbitrary set Xα ∈ C(A), then x, x′ ∈ Xα by definition. Construct xλ =

λx+ (1− λ)x′, λ ∈ [0, 1]. The vector xλ ∈ Xα because the set is convex. Since this holds for
all Xα then xλ ∈

⋂
α∈AXα for all λ ∈ [0, 1]. This shows that the set is convex.

Definition 4.4.2. Suppose that we have two sets A,B ⊆ Rn. Addition and subtraction of
the sets is defined, respectively, as.

A+B = {z ∈ Rn : z = a+ b, a ∈ A, b ∈ B} Addition of Sets
A− B = {z ∈ Rn : z = a− b, a ∈ A, b ∈ B} Subtraction of Sets

Lemma 4.4.2. Suppose that A,B ⊆ Rn are non-empty convex sets. Then (i) A + B and
A− B are convex. (ii) 0n×1 ∈ A− B if and only if A ∩B 6= ∅.

Proof. (i) Choose two arbitrary elements in x, x′ ∈ A+B. Then there exist vectors a, a′ ∈ A
and b, b′ ∈ B such that x = a+b, x′ = a′+b′. Since A and B are convex, aλ := λa+(1−λ)a′ ∈
A and bλ := λb+(1−λ)b′ ∈ B. That means that aλ+bλ = λ(a+b)+(1−λ)(a′+b′) ∈ A+B,
which means that A+B is convex. The proof for A− B is analogous.

(ii) =⇒ if 0n× ∈ A−B then there exist a ∈ A, b ∈ B such that a− b = 0. This implies
a = b and therefore A ∩ B 6= ∅.
⇐= Conversely, suppose that x ∈ A ∩ B, which is non-empty by assumption. Then

0n× = x− x, which is contained in A− B.
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4.4.2 Weak Separation

Lemma 4.4.3. Let X ,Y ⊆ Rn be two convex sets. If X ∩Y = ∅ then there exists a non-zero
p ∈ Rn such that ptx ≥ pty for all x ∈ X , y ∈ Y.

Proof. Define the set W := X − Y . Then we can plug-in the definition of the set W to
rewrite the statement of the lemma.

pt(x− y) ≥ 0, ∀x ∈ X , ∀y ∈ Y ⇐⇒ ptw ≥ 0, ∀w ∈ W

By Lemma 4.4.2 the set W is convex and since X ∩ Y = ∅ then {0n×1} /∈ W . Since
int(W ) ⊆ W then {0n×1} /∈ int(W) and we can apply Theorem 4.3.2 to show that there
exists non-zero p such that ptw ≥ pt0n×1 = 0. This completes the proof.
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4.4.3 Strict Separation

Lemma 4.4.4. Let X ⊆ Rn be a compact set and let Y ⊆ Rn be a closed set. Then the set
X − Y is closed.

Proof. Define W = X − Y . Then w is a limit point of W if there exists wk ∈ W such that
wk → w. By definition, there exist xk ∈ X and yk ∈ Y such that wk = xk− yk. Since the set
X is compact there exists a convergent subsequence ks such that xks → x∗ ∈ X . Since wk
converges to w, the subsequence wks also converges to w. This implies that the subsequence
yks = xks − wks converges to some y∗ = w − x∗. Since Y is closed, then y∗ ∈ Y .

Therefore, there exists x∗ ∈ X and y∗ ∈ Y such that w = x∗ − y∗ and the limit point is
contained in W . To conclude, this means that the set W is closed.

Theorem 4.4.1. Let X ⊆ Rn be a non-empty, convex, compact set and let Y ⊆ Rn be a
non-empty, convex, closed set. If X ∩ Y = ∅, then there exists a non-zero p ∈ Rn and a
scalar w ∈ R such that ptx > a > pty for all x ∈ X and y ∈ Y.

Proof. Define the set W := X − Y . By definition, we can restate the Lemma as:

pt(x− y) > a, ∀x ∈ X , ∀y ∈ Y ⇐⇒ ptw > a, ∀w ∈ W

By Lemma 4.4.2 the set W is convex and since X ∩ Y = ∅ then {0n×1} /∈ W . Since W is
closed we can apply 4.3.2 to show that there exists a non-zero p ∈ Rn and a scalar a∗ ∈ R
such that ptw > a∗ > 0.

Let LX denote the infimum of ptx over X and let UY be the supremum of pty over Y .
Then we can plug-in the definition of W and rewrite the equation as

pt(x− y) ≥ a∗ ∀x ∈ X , ∀y ∈ Y

ptx ≥ a∗ + pty ∀x ∈ X , ∀y ∈ Y Rearranging Equation
inf
x∈X

pty ≥ a∗ + pty ∀x ∈ X Finite Infimum because of Finite RHS

LX ≥ a∗ + sup
y∈Y

pty Finite Supremum because of Finite LHS

LX ≥ a∗ + UY

Set a = a∗

2
+ UY , a midpoint of [UY , a

∗ + UY ]. Then,

ptx ≥ LX > a > UY ≥ pty, ∀x ∈ X , ∀y ∈ Y
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4.5 Exercises
1. For any p ∈ Rn\{0} and a ∈ R, let

h(p, a) ≡
{
x ∈ Rn|pTx ≥ a

}
be the half space generated by the hyperplane H(p, a). Assume D is a closed subset
of Rn. Let E be the intersection of all half spaces that contain D, i.e.

E ≡
⋂

h(p,a)⊃D

h(p, a).

Prove D is convex if and only if D = E. This gives another characterization of
convexity. (Hint: separating hyperplane theorem.)

2. Assume U ⊂ Rn is convex. Let x∗ ∈ U be a point. Prove the followings are equivalent:

(a) there is no x ∈ U such that xi > x∗i for all i = 1, · · · , n,

(b) there exists λ ∈ Rn
+\{0} such that x∗ solves

max
x∈U

λTx.

3. Let D be a nonempty convex subset of Rn. Prove its closure D is convex.
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Chapter 5

Convex Sets (II): Cones

Some types of optimization problems are unconstrained. For example, in a linear regression
the parameters are optimized over all of Rn. However, problems involving resource allocations
(in practical or theoretical problems) are bounded by capacity or other types of resource
constraints.

Definition 5.0.1. Let A be an m × n matrix. The finite cone spanned by the column
vectors aj ∈ Rn is defined as

cone(A) := {z ∈ Rm : z =
n∑
j=1

λjaj, λj ≥ 0}

The set of vectors with non-negative entries is denoted by Rm
+ . For example, we could

replace the restriction in the definition of a cone with λ ∈ Rm
+ instead of λj ≥ 0 for all j.

Definition 5.0.2 (Ordering of vectors). Let a, b ∈ Rm.

(i) (Weak Inequality) We say that a ≥ b if ai ≥ bi for all i ∈ {1, . . . ,m}.

(ii) (Strict Inequality I) We say that a > b if a ≥ b and ai∗ > bi∗ for at least one i∗.

(iii) (Strict Inequality II) We say that a� b if ai > bi for all i ∈ {1, . . . ,m}.
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5.1 Finite Cones are Convex Sets
Lemma 5.1.1. Let A be an m× n matrix. The cone of A is a convex set.

Proof. Suppose that b, b′ ∈ Cone(A) then there exists a vector λ, λ′ ∈ Rn
+ such that Aλ = b

and Aλ′ = b′. Let θ ∈ [0, 1]. Define bθ := θb+(1−θ)b′ = θAλ+(1−θ)Aλ′. By linearity this is
equal to A(θλ+(1−θ)λ′). We can verify that λθ ≥ 0 because it is the convex combination of
the two non-negative vector (each individual entry is non-negative). Therefore, bθ ∈ Cone(A)
for all θ ∈ [0, 1]. That means that Cone(A) is convex.

Figure 5.1: Example
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5.2 Finite Cones are Closed Sets

5.2.1 Carathéodory’s Theorem

Definition 5.2.1. Let A be an m× n matrix. A column submatrix of A is a matrix that is
constructed by selecting some (or all) the columns of A.

Definition 5.2.2. Let A be an m×n matrix. Define A := {Ak} as the collection of column
sub-matrices of A. The collection of full rank column submatrices is denoted by A∗ ⊆ A.

Theorem 5.2.1. (Carathéodory’s Theorem) Let A be a non-zero m× n matrix, then

Cone(A) =
⋃

Ak∈A∗

Cone(Ak).

Proof. We will show the equality of the sets in two steps.
(i)

⋃
Ak∈A∗ Cone(Ak) ⊆ Cone(A): If x ∈ Rn belongs to the union of cones, then there

exists a full-rank column submatrix Ak such that x ∈ Cone(Ak). Suppose that Ak is an
m × p matrix. That means that there is a vector with non-zero entries, λ ∈ Rp

+ such that
x = Akλ. Suppose (WLOG) that Ak is constructed by dropping the last n−p columns of A,
which are recorded in the matrix B. Then x = Akλp+B0(n−p)×1. That means that x = Aλ∗,
where λ∗ stacks λ and 0(n−p)×1. Since λ∗ ∈ Rn

+, then x ∈ Cone(A).

(ii) Cone(A) ⊆
⋃
Ak∈A∗ . The first part of the proof involves some preprocessing of the

matrix A. We want to discard some easy cases where the relationship holds in order to apply
our main proof strategy. (I) Suppose that A is already full rank, then define Ak = A and we
are done. (II) Suppose that A is not full rank rank. Let’s break this down into two cases:
(IIa) First, suppose that x = 0m×1. Since A is non-zero, we can always construct a full rank
column submatrix by setting Ak = a∗, where a∗ is a non-zero vector. Then we can define
0m×1 = Akλ where λ = 0. That means that 0 ∈ Cone(Ak) ⊆

⋃
Ak∈A∗ Cone(Ak).

(IIb) Now let’s consider the case where x is non-zero. Since x ∈ Cone(A), then x =∑
j=1 λjaj, where λ ∈ Rn

+. If some λj are zero then construct a new matrix by dropping
some of the columns. For notational simplicity assume that this column submatrix is our
new starting point, calling it A. WLOG assume that this column submatrix is not full rank,
otherwise we are done.

By Lemma 2.2.1 since A is not full rank, there exists a non-zero vector β ∈ Rn such that
0 =

∑n
j=1 βjaj. At least one βj is non-zero and we can assume without loss of generality
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that it is strictly positive (if it isn’t just multiply both sides by negative one). We define the
following auxiliary quantity,

µ := max
j∈{1,...,n}

βj
λj
, µ > 0

The quantity µ is positive by construction because we have preprocessed the matrix (dropping
certain columns) so that all λj > 0 and there is at least one βj > 0. We can rewrite the
vector x as:

x =
∑
j=1

λjaj + 0m×1 (Add a zero vector)

=
∑
j=1

λjaj +
1

µ

∑
j=1

βjaj (Because A has a non-trivial kernel)

=
∑
j=1

(
λj −

βj
µ

)
aj (Grouping terms)

=
∑
j=1

λj

1−

(
βj
λj

)
µ

 aj (Multiplying and dividing by λj > 0)

=
∑
j=1

λ̃jaj Define λ̃j := λj

1−

(
βj
λj

)
µ


Since µ =

βj∗

λj∗
for some j∗, then at least one λ̃j∗ = 0. Furthermore, λ̃j ≥ 0, ∀j ∈ {1, . . . , n}

because βj
λj
≤ µ. Drop all the columns for which λ̃j = 0 (there is at least one column

dropped), call this Ak. Then x ∈ Cone(Ak). If the matrix is full rank then we are done.
If not repeat the process until you obtain a full rank matrix Ak. The process has to stop
eventually because (i) there are a finite number of columns to start with, (ii) at least one
column is dropped at every step if Ak is not full rank and (iii) x is non-zero and A has at
least one non-zero column (which rules out the case there all λ̃ are zero).
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5.2.2 Main Result

Theorem 5.2.2. Let A be an m× n matrix, then cone(A) is a closed set.

Proof. By definition, cone(A) is closed if for every sequence xs ∈ cone(A) such that xs → x,
then x ∈ cone(A). If A is a zero matrix, then cone(A) only contains one point (the zero
vector) and therefore it is closed. If A is non-zero, by Theorem 5.2.1 each xs belongs to
the cone of at least one full rank submatrix Ak ∈ A∗. Assign each vector to a submatrix
such that xs ∈ cone(Ak). Let xsk denote a subsequence of vectors assigned to matrix k.
The total number of submatrices is finite because A has a finite number of columns. This
implies that at least one subsequence has an infinite number of elements because of the
pidgeonhole principle. WLOG assume that it is xsk . Because xs is a convergent sequence,
xsk also converges to x.

Suppose that Ak is an m × l matrix (l ≤ n). Since it is full rank and xsk ∈ cone(Ak),
there exists a unique vector λsk ∈ Rl

+ such that Akλsk = xsk (it is an over-identified system).
It can be solved by computing λsk = (A′

kAk)
−1A′

kxsk = Bxsk . The linear map T−1(x) = Bx

is continuous, which means that limsk→∞ λsk = B limsk→∞ xsk which is equal to Bx = λ∗.
The vector λ∗ ∈ Rl

+ because every element in the sequence belongs to R+ and the set is
closed. To complete the proof we need to show that Akλ∗ = x. The linear map T (λ) := Akλ

is continuous, which means that Akλ∗ = Ak (limsk→∞ λsk) = limsk→∞ (Akλsk) = x.
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5.3 Farkas’ Lemma
Lemma 5.3.1. Let A be an m × n matrix and b ∈ Rm then exactly one of the following
statements is true:

1. b ∈ Cone(A).

2. There exists a non-zero p ∈ Rm such that ptA ≥ 01×n and ptb < 0.

Proof. We will prove the result by cases.
(i) Suppose that b /∈ Cone(A). By Lemma 5.1.1 the Cone(A) is convex and because

of Lemma 5.2.2, it is closed. Therefore, there exists a separating hyperplane such that
ptx > a > ptb, for all x ∈ Cone(A). We will impose a stronger version of this inequality
by using the specific properties of the convex cone. Since 0 ∈ Cone(A), it follows that
pt0 = 0 > a. On the other hand suppose that there exists an x ∈ Cone(A) such that
ptx < 0. It follows that x∗ = λx ∈ Cone(A) for any λ > 0. However, if λ is chosen
sufficiently large then

ptx∗ = pt(λx) = λptx < ptb

which violates the hyperplane result. That means that ptx ≥ 0 and we can prove the
stronger inequality ptx ≥ 0 > ptb, ∀x ∈ Cone(A). Furthermore, notice that the column
aj ∈ Cone(A). That means that ptaj ≥ 0 for all j ∈ {1, . . . , n} or equivalently, ptA ≥ 01×n.

(ii) Suppose that b ∈ Cone(A). Assume that there exists a non-zero p ∈ Rm such that
ptA ≥ 0 and ptb < 0. Since b ∈ Cone(A) then there exists λ ∈ R+ such that b = Aλ. Then
ptb = ptAλ. Since ptA is a 1×n non-negative vector and λ is non-negative, then ptAλ ≥ 01×1.
However, this violates the premise that ptb < 0. This completes the proof.
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5.4 Application: Financial Arbitrage
This section is inspired by Naiman and Scheinerman (2017).

There is a financial market which trades n different assets. The price of one unit of each
asset is qj for j ∈ {1, . . . , n} and we can stack the prices in a vector q ∈ Rn.

The return of each asset is risky. We will model this uncertainty by assuming that there
are m different states of the world. For example, the assets could represent the stock returns
of different companies and the states capture cases where the economy is performing well,
average or poorly. We will assume that the returns are modeled as an m×n return matrix, R,
with rows representing the state of the world and the columns the return of each company. In
this model there is no time (although we can interpret R as a matrix that already discounts
future returns).

R =


R11 · · · R1n

... . . . ...
Rm1 · · · Rmn

 , q =


q1
...
qn

 =⇒ Π =


R11 − q1 · · · R1n − qn

... . . . ...
Rm1 − q1 · · · Rmn − qn


The matrix Π represents the profits in each state, net of the assets’ initial price. This

can be expressed more succinctly in matrix form as Π = R−1n×1q
t. The unit vector ensures

that the initial price is subtracted from the return in each state (because the initial price is
paid regardless). Notice that m is not necessarily equal to n, that means that the market
could be incomplete (m > n) or that there are redundant assets (m < n).

The investor decides to invest an amount xj in each asset. Her total portfolio is a vector
x ∈ Rn. If xj > 0 then the investor pays the initial price and receives a return tomorrow (a
long position). If instead xj < 0 then the investor sells the asset to somebody else today
(e.g. stocks to raise capital) and agrees to pay the returns tomorrow (a short position). The
total returns from a portfolio are r := Πx.

Definition 5.4.1. If there exists a portfolio vector x ∈ Rn such that Πx � 0, then we say
that there is an arbitrage opportunity in the market.

If an arbitrage opportunity exists then an investor can ensure that she can obtain a
strictly positive return in each state. These opportunities arise from a mispricing of the
assets in the market. However, what does it mean to “price” the asset correctly, specially in
a world with incomplete markets? This is the question that the Arbitrage Theorem attempts
to answer.
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Theorem 5.4.1 (Arbitrage Theorem). Let Π be an m× n net profits matrix. Then exactly
one of the following statements holds.

(a) There exists an x ∈ Rn such that Πx� 0m×1 (Arbitrage).

(b) There exists a probability vector p such that ptΠ = 01×n (Expected value pricing)

Recall from Definition 1.6.2 that a probability vector is a vector that has non-negative
entries (π ≥ 0) and its entries add up to one (pt1n×1 = 11×1). The second condition can be
restated as follows

ptΠ = ptR− pt1n×1q
t = 01×n =⇒ qt = ptR

The vector ptR is vector with the average return of each asset (its expected value). Viewed
in this way the Arbitration Theorem can be stated as follows: “A financial market does
not have arbitrage opportunities if and only if assets are priced according to their expected
returns”. This is another way of stating theorems that are written as “exactly one condition
must hold”.

The Arbitrage theorem is an insightful application of Farkas’ Lemma. The proof is
interesting because it reveals that we can transform many problems involving probabilities
into a linear system with cones.
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Proof of Arbitrage Theorem. We break down the proof into two cases:

(i) Suppose that condition (b) holds, then there exists a probability vector such that
ptΠ = 01×n. If (a) holds then there exists a vector x∗ ∈ Rn such that Πx∗ � 0m×1. There-
fore if p is an m × 1 non-negative vector with at least some positive entries„ ptΠx∗ > 0.
However, if condition (b) holds then ptΠ = 01×n which implies that ptΠx∗ = 0, a contradic-
tion.

(ii) Suppose that condition (b) fails. It is useful to rewrite the condition to rewrite it in
terms of cones before negating it so that we can apply our previous results. Condition (b)
can be stated as: There exists a p such that:

ptΠ = 01×n

p probability vector
⇐⇒

ptΠ = 0

pt1m×1 = 1

p ≥ 0

⇐⇒

[
Πt

11×m

]
p =

[
0n×1

1

]
, p ≥ 0

Define An×m :=

[
Πt

11×m

]
and bn×1 :=

[
0n×1

1

]
. Therefore the negation of the condition is

b /∈ Cone(A) (there does not exist such a p). We can then apply Farkas’ lemma (using
slightly different notation for the vectors): There exists a non-zero vector s ∈ Rn+1 such

that stA ≥ 0 and stb < 0. We can partition the vector as s =

[
sΠ

s1

]
, where sΠ ∈ Rn and

s1 ∈ R. In block partitioned form this means that:

stA ≥ 01×n

stb < 0
⇐⇒

[
stΠ s1

] [ Πt

11×m

]
≥ 01×m

[
stΠ s1

] [0m×1

1

]
< 0

⇐⇒
stΠΠ

t + s111×m ≥ 01×n

s1 < 0

Notice that the term s1 is not transposed because it is a scalar. Therefore stΠΠt ≥ −s111×m

which is strictly greater than zero because s1 is strictly negative. We can transpose the result
to show that ΠsΠ ≥ s11m×1 � 0. Therefore condition (a) has to hold.
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5.5 Exercises
1. There are several different characterizations of Farkas’ Lemma. For example

Lemma 5.5.1 (Farkas’ Lemma V2). Let A be an m × n matrix and b ∈ Rm. Then
one and only one is true:

(i) There exists x ∈ Rn such that Ax ≤ b.

(ii) There exists y ∈ Rm such that y ≥ 0m×1, y
tA = 01×n, y

tb < 0.

In this exercise, you will prove the lemma.

(a) Define C = [A,−A, Im×m] ∈ Rm × R2n+m. Show that condition (i) is equivalent
to b ∈ Cone(C) (Hint: Use properties of block-partitioned matrices and define a
vector z ∈ R2n+m

+ ).

(b) Show that condition (ii) is equivalent to: There exists y ∈ Rm such that ytC ≥
01×(2n+m) and ytb < 0.

(c) Use the original Farkas’ Lemma to prove (Version 2).

2. Consider an alternative restriction on asset prices.

Definition 5.5.1 (Pricing Restrictions). Suppose that there does not exist an x ∈ Rn

such that (qtx ≤ 0 and Rx > 0m×1) or such that (qtx < 0 and Rx ≥ 0m×1).

(a) Write down an economic interpretation of this condition.

(b) Suppose that there exists a set of portfolio weights x ∈ Rn that yield positive
returns in every state (Πx � 0). Show that Rx > 1m×1q

tx. Give a simple
example of a return matrix R, a price vector q and a portfolio x where this holds
but the conditions in Definition 5.5.1 does not hold.

(c) Suppose that there exists a probability vector α ∈ Rm with strictly positive
entries which satisfies αtΠ = 01×n. Show that Definition 5.5.1 is satisfied.
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Chapter 6

Quadratic Forms

In previous chapters we have limited our attention to linear maps. Now we will focus on a
different type of map, a quadratic form which generalizes quadratic function f(x) = ax2 to
the Euclidean space. This appears in several areas of economics. For example, the variance of
a linear combination of random variables can be represented as a quadratic form. Similarly,
this type of maps can be used to characterize the derivatives of certain types of function
(e.g. convex) that arise frequently in decision theory.

Definition 6.0.1. Let A be an n×n matrix and let x ∈ Rn. Then the function T (x) = xtAx

is a quadratic form in x.

Notice that T : Rn → R, which means that the output is a scalar. We will illustrate the
definition with an example. The variance formula is a canonical type of a quadratic form.
We will not prove why it holds but rather focus on what it implies from the point of view of
matrices.

Example 3. Suppose that Y1, . . . , Yn is a set of random variables,and let x1, . . . , xn be a set
of constant weights. Define the weighted average as Ȳω =

∑n
i=1 xiYi. For example, if xi = 1

n

then Ȳ is a simple average. Then the usual variance formula is defined as:

V ar(Ȳω) :=
n∑
i=1

n∑
j=1

xixjCov(Yi, Yj)

If A is a covariance matrix with ij entries equal to Cov(Yi, Yj) and x is a vector of weights,
then V ar(Ȳ ) = xtAx.

The example with the variance illustrates that quadratic forms can be written in terms
of a double sum, xtAx =

∑
i

∑
j xixjaij, which can be verified using the definition of matrix

multiplication.
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6.1 Positive (Semi) Definite Matrices
The covariance matrix A of a vector of random variables has several interesting properties.
It is symmetric because Cov(Yi, Yj) = Cov(Yj, Yi). Furthermore, since all random variables
have non-negative variance, then V ar(Z) ≥ 0, where Z =

∑
i xiYi. These properties can be

expressed succintly in terms of the covariance matrix.

Definition 6.1.1. Let A be an n× n matrix. The matrix A is positive semi-definite if it is
symmetric and xtAx ≥ 0 for all x ∈ Rn.

Notice that the definition allows for the possibility that xtAx = 0. To see an example
where the variance is equal to zero, assume that Z = Y − Y ≡ 0 where V ar(Y ) > 0. In
this case the same random variable is subtracted from itself. In matrix form suppose that
Y1 = Y and Y2 = Y , then Cov(Y1, Y2) = Cov(Y, Y ) = V ar(Y ). The resulting covariance
matrix is:

A =

[
V ar(Y ) V ar(Y )

V ar(Y ) V ar(Y )

]
, x =

[
1

−1

]
=⇒ xtAx = 0

The reason why the variance of the linear combination is zero in this case was because the
two random variables were colinear, which suggests a link between stochastic (random) no-
tions of colinearity and positive semi-definiteness of the covariance matrix. In fact, stochastic
linear independence is best captured by a stronger property known as positive definiteness.

Definition 6.1.2. Let A be an n × n matrix. The matrix A is positive definite if it is
symmetric and xtAx > 0 for all x ∈ Rn\{0n×1}.

The definition of positive definiteness excludes x = 0 because 0tA0 = 0 regardless of the
properties of the matrix. In the variance example, it says that any linear combination of
random variables with non-zero weights has strictly positive variance.

We can also define similar notions of negative (semi) definiteness.

Definition 6.1.3. Let A be an n× n symmetric matrix.

(i) It is negative semi-definite if xtAx ≤ 0 for all x ∈ Rn.

(ii) It is negative definite if xtAx < 0 for all x ∈ Rn\{0n×1}.

Mathematically, a lot of derivations are similar for negative (semi) definite matrices as
in the positive (semi) definite case so we will only focus on the latter.
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6.1.1 Implications, Examples and Counter Examples

Lemma 6.1.1. Let A be an n× n positive semi-definite matrix. Then the diagonal entries
are all non-negative. Furthermore, if A is positive definite the diagonals are all strictly
positive.

Proof. Suppose that ei is an elementary basis vector (includes a one in entry i and zero in
all other entries). Then we can verify that etiAei = Aii. When A is positive semi-definite
etiAei ≥ 0 and when it is positive definite etiAei > 0.

However, the non-negativity of the diagonals is not sufficient to ensure positive semi-
definiteness. Consider the following counter example:

A =

[
1 2

2 1

]
, x =

[
1

−1

]
=⇒ Ax =

[
−1
1

]
=⇒ xtAx = −2 < 0

More conditions need to be imposed on the off-diagonal elements. It is hard to visualize such
restrictions in general because the matrix A can have a lot of elements. Consider a restricted
case where the diagonals are all one (a property satisfied by correlation matrices).

Figure 6.1: Shape of a Correlation Matrix (Rousseeuw and Molenberghs, 1994)

Figure 6.1 shows that the set of positive definite matrices as a convex set (see exercises).
In this case correlation matrices, satisfy a few interesting properties. The off-diagonal

elements of the correlation matrix need to be less than or equal to 1 in absolute value, but
that is not the only restriction. The valid correlations are inside the solid mesh. Typically
correlations are not transitive (X positively correlated to Y and Y positively correlated to
Z does not imply that X is positively correlated to Z), unless correlations are close to the
boundary of the set.
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6.1.2 Cholesky Decomposition

Positive scalars have a well-defined square root. The way to generalize this concept to
positive definite matrices is through a Cholesky decomposition.

Definition 6.1.4. An m×m matrix A has a Cholesky decomposition if there exists a lower
triangular, full rank matrix L such that A = LLt.

Lemma 6.1.2. Let A be an m×m matrix. The matrix is positive definite if and only if it
has a Cholesky decomposition.

Proof. We prove the lemma in two parts: ⇐= If L is a lower triangular full rank matrix.
∀x 6= 0, Ltx 6= 0 (because L is full rank). Then xtLLtx = (Ltx)tLtx > 0.

=⇒ We will use an induction argument.

(i) If m = 1, then A is a strictly positive scalar. Set L =
√
a11.

(ii) Let m ≥ 2. In the induction step suppose that all positive definite (m− 1)× (m− 1)

matrices have a Cholesky decomposition.

(iii) Now we will show that the result holds for m. Since m ≥ 2, we can write a matrix
Am×m in terms of blocks a11 (1× 1 matrix), A12 (1× (m− 1) matrix), A21 ((m− 1)× 1

matrix), A22 ((m− 1)× (m− 1) matrix). In block form:

A =

[
a11 A12

A21 A22

]

The proof will have two steps.

(a) Define S := A22 − 1
a11
A21A12, a candidate matrix. We will show that S is positive

definite. Construct x =

[
− 1
a11
A12y

y

]
∈ Rm for an arbitrary y ∈ Rm−1\{0}. The

resulting x is non-zero.

79



0 < xtAx

=
[
(− 1

a11
A12y)

t yt
] [a11 A12

A21 A22

][
− 1
a11
A12y

y

]

=
[
(− 1

a11
A12y)

t yt
] [ −a11

a11
A12y + A12y

− 1
a11
A21A12y + A22y

]
(Right Multiplying)

=
[
(− 1

a11
A12y)

t yt
] [ 0

− 1
a11
A21A12y + A22y

]
= yt(A22 −

1

a11
A21A12)y (Left Multiplying)

= ytSy Define S = A22 −
1

a11
A21A12.

Therefore, ytSy > 0 for all y ∈ Rm−1\{0}. By Definition S is positive definite.

(iv) By the induction step, since S is a positive definite matrix of size (m − 1) × (m − 1)

then it has Cholesky decomposition. That means that there exists a full-rank, lower
triangular matrix such that S = LSL

t
S. We will propose a Cholesky decomposition

using a guess and verify strategy:

L =

[ √
a11 01×n

1√
a11
A21 LS

]

To complete the proof we show three things:

(a) The matrix is lower triangular (by construction).

(b) It is full rank. By Lemma 6.1.1, since A is positive definite, then
√
a11 > 0.

Construct a matrix B =

[
01×n

LS

]
which is full rank because LS is full rank. Then

the column
[ √

a11
1√
a11
A21

]
is not in the image of B (because all columns of B have zero

on the first row). By Corollary 2.2.1, the matrix L has to be full rank.

(c) We will show that A = LLt.
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LLt =

[ √
a11 01×n

1√
a11
A21 LS

][√
a11

1√
a11
A12

0n×1 LtS

]

=

[
a11 A12

A21
1
a11
A21A12 + LSL

t
S

]

=

[
a11 A12

A21
1
a11
A21A12 + S

]

=

[
a11 A12

A21 A22

]
= A

where the first equality is using the fact that A is symmetric (from positive definiteness)
and hence At21 = A12. This completes the proof, therefore all positive definite matrices
have a Cholesky Decomposition.

6.1.3 Partial Ordering

The covariance matrix of estimators can often be shown to be positive definite. In the
multivariate case (a vector of estimators) we need to define a notion of when the variance of
estimator is “lower” than another. Individual comparisons of variances can be helpful but
incomplete. The proper notion of ordering is the following.

Definition 6.1.5. Let A and B be two positive definite matrices. Then we say B > A if
B − A is positive definite.

This implies that xt(B−A)x > 0 for all x ∈ Rn\{0n×1}. Therefore xtBx > xtAx and we
can say that the quadratic form of A is always strictly lower than that of B. In the variance
example, it says that the variance of a linear combinations of estimators (with covariance
matrix A) is strictly lower than those of estimators with covariance matrix B.
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6.2 Exercises
1. Let A be an n× n square matrix. Assume:

xTAx = 0, ∀x ∈ Rn. (6.1)

(a) Prove all diagonal components of A are 0 ∈ R.

(b) Show by example that condition (6.1) does not imply A = 0.
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Chapter 7

Determinants

Definition 7.0.1. Let A be an n× n matrix and let n ≥ 2. The minor Aij is obtained by
deleting the i-th row and the j-th column of A.

Definition 7.0.2. Let A be a n×n matrix, its determinant, denoted by det(A) is defined
recursively in the following way.

1. If A is a 1× 1 matrix, i.e. det(A) = a11.

2. The determinant for an (n+ 1)× (n+ 1) matrix A is defined as

det(A) =
n+1∑
j=1

(−1)1+ja1jdet(A1j).

For example, if A is a 2× 2 matrix:

det(A) =

(
a11 a12

a21 a22

)
, =⇒ det(A) := a11a22 − a12a21

For example, let A be the following 3× 3 matrix: a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Then

det(A) = a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣− a12
∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
= a11(a22a33 − a32a23)− a12(a21a33 − a31a23) + a13(a21a32 − a22a31).
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We present the following properties of determinants without proof.

Lemma 7.0.1 (Basic Properties of Determinants). Let A = [a1,a2, ...,an] be an n × n

matrix, where aj’s are the column vectors of A. Let b be an n× 1 vector. Let c be a scalar.

• det([a1, ...,aj + b, ...,an]) = det([a1, ...,aj, ...,an]) + det([a1, ..., b, ...,an])

• det([a1, ..., caj, ...,an]) = c det([a1, ...,aj, ...,an])

• det([a1, ...,ai, ...,aj, ...,an]) = −det([a1, ...,aj, ...,ai, ...,an])

• det([a1, ...,ai, ...,ai, ...,an]) = 0

Lemma 7.0.2 (Properties of Determinants). Let A,B be an n×n matrix and α ∈ R. Then

• det(A) = det(AT ).

• det(A) 6= 0 if and only if A is full rank.

• det(AB) = det(A)det(B).

• det(αA) = αndet(A).

• det(I) = 1.

84



7.1 Characteristic Polynomial
Lemma 7.1.1. Let A be an m×m matrix and λ ∈ C, then det(λI −A) is a polynomial of
degree n in λ and the coefficient of λn is 1.

Proof. We will prove this by induction.

(i) For n = 1, det(λI −A) = λ− a11. This a polynomial of degree 1 and the coefficient in
front of λ is 1.

(ii) Assume for n = k the determinant of a matrix in this form is a polynomial of λ with
degree k and the coefficient of λk is 1. Consider n = k + 1. By expansion by the first
row,∣∣∣∣∣∣∣∣∣∣

λ− a11 −a12 · · · −a1n
−a21 λ− a22 · · · −a2n

... ... . . . ...
−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣∣∣
:= |B|

= (λ− a11) det(B11) + (−1)1+2(−a12) det(B12) + · · ·+ (−1)1+n(−a1n) det(B1n)

Note that each det(B1j) for 2 ≤ j ≤ n is a polynomial of degree k− 1. For det(B11), it
is a polynomial of degree k and the coefficient of λk is 1 by our induction assumption.
Hence this whole term is a polynomial of degree k + 1 and the coefficient of λk+1 is
again 1. Therefore, if A is an n × n matrix, det(λI − A) is a polynomial of λ with
degree n and the coefficient of λn is 1. We write it as

|λI − A| = λn + bn−1λ
n−1 + · · ·+ b0.

We call this polynomial the characteristic polynomial of matrix A. We call λ is an
eigenvalue of A if λ is a root of its characteristic polynomial.

Example 4. If A is an n × n upper (lower) triangular matrix, then all its eigenvalues are
its diagonal components:∣∣∣∣∣∣∣∣∣∣

λ− a11 −a12 · · · −a1n
0 λ− a22 · · · −a2n
... ... . . . ...
0 0 · · · λ− ann

∣∣∣∣∣∣∣∣∣∣
=

n∏
i=1

(λ− aii)
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Example 5. Let

A =

(
0 1

−1 0

)
then

det(λI − A) = λ2 + 1

Clearly, there is no real number λ satisfying λ2 + 1 = 0. This example tells us there may be
no real eigenvalues even if the matrix A is real. But we know there are two roots of λ2+1 = 0

in complex numbers C, i and −i. That is if we consider A as a matrix over the field C
(Recall we can always do this because R is a subfield of C), it has two eigenvalues and they
are in C. �

The nonexistence of real eigenvalues of a matrix A can be easily resolved if we always
consider the matrix A is over the field C even if it is real. Recall:

Fundamental Theorem of Algebra: Let P (x) = xn + bn−1x
n−1 + · · ·+ b0

where b0, · · · , bn−1 ∈ C, then there exists x1, · · · , xn ∈ C such that P (x) =∏n
i=1(x− xi).

It tells us a polynomial with complex coefficients of degree n always has n complex roots if
each root is counted up to its multiplicity. Clearly, every real coefficient polynomial can be
considered as a complex coefficient polynomial. Hence |λA− I| always has n roots (possibly
complex numbers) if each root is counted up to its multiplicity.

In this course, we will only consider matrices over R. But from now on, when we talk
about eigenvalues of a matrix A, even if A is real, we consider A as a complex matrix and
allow its eigenvalues and eigenvectors to be complex. From above analysis, we can always
write det(λI − A) =

∏n
i=1(λ − λi). Thus λ is an eigenvalue of A if and only if λ = λi for

some i. In other words, λ1, · · · , λn are all the eigenvalues of A and it is possible that λi = λj

for some i 6= j.
As an simple application of this result, we can have another characterization of when A

is invertible.

Theorem 7.1.1. Let A be an n× n matrix and λ1, · · · , λn be the roots of its characteristic
polynomial. Then

n∏
i=1

λi = det(A)

Therefore A is invertible if and only if A does not have 0 eigenvalue.
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Proof. Since det(λI − A) =
∏n

i=1(λ− λi), evaluating at λ = 0 on both sides yields

| − A| = (−1)n
n∏
i=1

λi

But the left hand side is (−1)n det(A). Hence det(A) =
∏n

i=1 λi.

7.2 Vectorization and Continuity (Optional)
Let A,B be two m× n matrix. Then the vectorization of the matrix is

A =

 ↑ · · · ↑
a1 · · · an

↓ · · · ↓

 , vec(A) =


a1
...
an


(mn)×1

where A is a matrix. We can define a distance metric for matrices based on the Euclidean
norm.

d(A,B) = ||vec(A)− vec(B)||

Definition 7.2.1. Define Φ(L, n) be a collection of sets. Each set σ ∈ Φ(L, n) selects L
indexes or less from {1, . . . , n} (possibly repeating indexes).

The size of the collection Φ(L, n) is finite because there is a finite number of permutations
of the indexes.

Definition 7.2.2. . A function f : Rn → R is a finite multivariate polynomial if there exists
a finite L such that f can be expressed as

f(x) =
∑

σ∈Φ(L,n)

γσ
∏
k∈σ

xk, γσ ∈ R forall σ ∈ Φ(L, n)

we say that L is the order of the polynomial.

For example, f(x) = x41 + x1x2 + x31x
2
2 is a multivariate polynomial of order 5. Because

polynomials are expressed as a finite addition and multiplication of elements in the vector
x ∈ Rn, finite polynomial functions are continuous.

Lemma 7.2.1. Let A be a n×n matrix. Then det(A) = f(vec(A)), where f is a polynomial
of order n in the entries of the matrix.
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Proof. The proof procedes by induction. If n = 2 then, det(A) = a11a22− a12a21 which has
a polynomial of order L = 2. Suppose that the determinant of every n × n matrix can be
represented as a finite order polynomial of order n. We will show that this also holds for
n+ 1.

det(A) =
n+1∑
j=1

(−1)1+ja1jdet(A1j)

=
n+1∑
j=1

(−1)1+ja1j
∑

σ∈Φ(n,(n+1)2)

γjσ
∏
k∈σ

aik,jk Substituting Def. Polynomial

=
n+1∑
j=1

∑
σ∈Φ(n,(n+1)2)

(−1)1+jγjσ

(
a1j
∏
k∈σ

aik,jk

)
Distributing Terms

=
∑

σ∈Φ(n,(n+1)2)

n+1∑
j=1

(−1)1+jγjσ

(
a1j
∏
k∈σ

aik,jk

)
Exchanging Order of Sum

=
∑

σ∈Φ(n,(n+1)2)

γσaij
∏
k∈σ

aikjk Substituting γσ =
n+1∑
j=1

(−1)1+jγijσ.

=
∑

σ∈Φ(n+1,(n+1)2)

γ̃σ
∏
k∈σ

aikjk Adding One More Term to Product

In Line 2 we substitute the fact that det(Aij) is a polynomial of order n that select elements
from vec(A), which has (m + 1)2 elements. The third line groups together the coefficients
and elements of the matrix that multiply each other.

We can always write a matrix in a vectorized form. That means that we can change the
domain of the determinant to be Rn2 .

Lemma 7.2.2. The function det : Rn2 → R is a continuous function.

Proof. Use Lemma 7.2.1 and the fact that multivariate polynomials are continuous.

This leads to an interesting result. If a matrix is full rank, then ”small” perturbations
of the entries of a full rank (invertible) matrix preserve invertibility of the matrix. In other
words, invertibility is not a ”knife-edge” case. This is particularly important in settings where
a matrix is estimated with uncertainty. It is also possible to show a similar characterization
for positive definite matrices.

Corollary 7.2.1. The set of full rank n × n matrices is an open set under the vectorized
Euclidean norm.
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Proof. Since the determinant is a continuous function that implies that the pre-image of
every open set is an open set. Let A denote the set of n × n full rank matrices, which can
characterized by matrices with a non-zero determinant.

A := {vec(A) ∈ Rn2

: det(A) 6= 0}

The set U = R\{0} is an open set, therefore the pre-image det−1(U) is also an open set,
using the vectorized Euclidean norm. That means that the set of square full rank (invertible)
matrices is an open set.
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7.3 Exercises
A matrix Bn×n is positive definite if ∀x ∈ Rn, xTBx > 0. An equivalent definition of positive
definiteness can be formulated using the determinant:

B =

b11 ... bn1

... ... ...

bn1 ... bnn


Define the leading principal minor k of B, as the matrix formed by taking the upper left

(k × k) submatrix. In other words:

B1 =
[
b11

]
, B2 =

[
b11 b12

b21 b22

]
, ..., Bn =

b11 ... bn1

... ... ...

bn1 ... bnn


A matrix is positive definite if and only if ∀i ∈ {1, ..., n}, det(Bi) > 0. (Take this as a

given, you do not need to prove it).

1. Define a function F :Mn×n → Rn. F (B) = (det(B1), ...., det(Bn)). Reformulate the
definition of positive definiteness in terms of F (B).

2. Define a metric for the distance between two matrices, d(A,B). Show that it is a
metric: that it is non-negative, symmetric and satisfied the triangle inequality.

3. (Optional) Show that the function F (B) is continuous.

4. (Optional) Show that the set of positive definite matrices of size (n) is an open set in
Mn×n.

Remark This shows that under small perturbations in the components of a positive
definite matrix, the resulting matrix preserves the property of positive definiteness.
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Chapter 8

Eigenvalues and Eigenvectors

The techniques we have studied so far allow us to solve static linear equation systems. In some
applications it is useful to analyze the properties of recursive operations on matrices, which
naturally arise in dynamic systems. The most useful concept in this area are eigenvalues
and eigenvectors.

8.1 Review of Complex Numbers
A complex scalar a ∈ C has the form a = aR + aIM i where aR, aIM are real numbers and
i =
√
−1. Every complex scalar has a complex conjugate, which we define ā = aR − aIM i.

Properties 1. The complex conjugate satisfies:

(a) ā = a, if and only if aIM = 0.

(b) ab = āb̄.

(c) āa = a2R + a2IM ≥ 0.

(d) āa = 0 if and only if a = 0.

Let x be a complex vector. Let A be an m × n matrix with complex entries. The
conjugate of a matrix is the conjugate of the individual entries. Then we can define matrix
multiplication analogously to the real numbers. We will also define the conjugate transpose,
also known as the hermitian matrix.

Definition 8.1.1. Let A be an n × n matrix with [aij] ∈ C. Then the matrix AH is the
Hermitian matrix of A if [aHij ] = [āji].
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The hermitian matrix transposes the matrix and then finds the conjugate transpose of
each entry.

We can define the image and the kernel in the complex numbers as well. Let A be an
m× n matrix with real entries, then the image and kernel are,

Im(A) := {z ∈ Cm : z = Ax, x ∈ Cn}

Ker(A) := {x ∈ Cn : 0m×1 = Ax, x ∈ Cn}

Remark: The identity matrix spans the complex plane, that is Im(I) = Cn. Therefore,
using the same proof as Lemma 2.2.2 (which did not rely on the entries being real or complex)
then full rank matrices have at most m columns. If a full rank matrix has n = m complex-
valued columns, then it is invertible.

8.2 Eigenvectors and Eigenvalues
Definition 8.2.1. Let A be a n × n real matrix. If there exists a non-zero vector v ∈ Cn

and a complex scalar λ ∈ C such that Av = λv, then we call λ is an eigenvalue of A, and v

is the (right) eigenvector with corresponding eigenvalue λ.

Lemma 8.2.1. Let A be an n × n matrix. Suppose that v ∈ Cn\{0n×1} are eigenvectors
with corresponding eigenvalues λ ∈ C, then:

1. If λ = 0, then A is not full rank.

2. Asv = λsv, for all positive integers s.

3. The vector v̄ is also an eigenvector of A with associated eigenvalue λ̄.

Proof. The proof has three parts:

1. Suppose that λ = 0 and that v is a non-zero vector. Then v ∈ Ker(A). That means
that Ker(A) 6= {0n} and therefore A is not full rank.

2. The relationship holds for t = 1 by definition. Suppose that it holds for Step t. Then
for Step t+ 1, then At+1x = AAtx = A(λtv) which is equal to λtAv = λt+1v.

3. If Av = λv, then we can apply the conjugate transpose. Since A has real entries,
Ā = A, which means that Av = Av̄ = λ̄v̄. Therefore v̄ is also an eigenvector of A with
associated eigenvalue λ̄.
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8.2.1 Linear Independence and Diagonalizability

Definition 8.2.2. The vectors of m × n matrix A with complex entries are is said to be
linearly independent if and only if Ker(A) = 0n×1.

We can use this definition to show that the eigenvectors associated with distinct eigen-
values are linearly independent.

Theorem 8.2.1. Let A be an n × n matrix. Assume λ1, · · · , λr are distinct eigenvalues of
A and x1, · · · , xr are associated eigenvectors. Then x1, · · · , xr are linearly independent.

Proof. We show this by induction on r. When r = 1, this trivially holds because x1 6= 0.
Assume r = k < n and any set of k eigenvectors associated with distinct eigenvalues are
linearly independent. Let r = k+1. Assume x1, · · · , xk+1 are eigenvectors corresponding to
different eigenvalues λ1, · · · , λk+1. If

(∗) c1x1 + · · ·+ ck+1xk+1 = 0m×1

Then we can derive two new sets of restrictions:

0m×1 = c1λk+1x1 + · · ·+ ck+1λk+1xk+1 = 0 Multiplying (∗) by λk+1

0m×1 = c1Ax1 + · · ·+ ck+1Axk+1 Left-Multiplying (∗) by A

The last equation can be written as c1λ1x1 + c2λ2x2 + · · · + ck+1λk+1xk+1 = 0. Combining
the two equations, we have that

c1(λk+1 − λ1)x1 + c2(λk+1 − λ2)x2 + · · ·+ ck(λk+1 − λk)xk = 0.

By induction assumption, ci(λk+1 − λi) = 0 for all 1 ≤ i ≤ k. Since λ’s are distinct, this is
equivalent to ci = 0 for all 1 ≤ i ≤ k. Lastly, from (∗), we know ck+1 = 0 since xk+1 6= 0.

Definition 8.2.3. Let A be an n× n matrix and let Λ be a diagonal matrix of eigenvalues.
Then the matrix A is said to be diagonalizable if there exists an n × n full rank matrix B

such that A = BΛB−1.

Lemma 8.2.2. Let A be an n× n matrix. If A is diagonalizable, then At = BΛtB−1 for all
positive integers t.

Proof. The relationship holds for t = 1. Suppose that it also holds for Step t. Then for
Step (t+ 1)
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Theorem 8.2.2. Let A be an n × n matrix. A is diagonalizable if and only if A has n
linearly independent eigenvectors.

Proof. ⇐= Let B be a matrix whose columns are eigenvectors of A, which we denote bj.
Then Abj = λjbj for j ∈ {1, . . . , n}. We can express this in matrix form as AB = BΛ, where
Λ is a diagonal matrix with λj’s on its diagonal. Since B is full rank, then A = BΛB−1.

=⇒ Suppose that A is diagonalizable and A = BΛB−1. Then we can reverse the steps
to show that AB = BΛ and Abj = λjbj.
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8.2.2 Symmetry

Matrices are guranteed to have real eigenvalues and eigenvectors when they are symmetric.

Theorem 8.2.3. If A is an n× n symmetric real matrix. Then all its eigenvalues are real.
Moreover, for each eigenvalue λ, there exist real eigenvectors.

Proof. Let λ be an eigenvalue of A and x 6= 0 be a corresponding eigenvector. Then
Ax = λx. Hence the conjugate transpose is equal to:

λxtx = xtAx

= (Atx)tx

= Ax
t
x

= λxtx

Since xtx 6= 0, we have λ = λ. That is λ is real. Moreover, suppose that x ∈ C where
x = a + bi. Then by Lemma 8.2.1 the vector x̄ = a − bi is also an eigenvector associated
with λ̄ = λ. Because eigenvectors are non-zero, then either a 6= 0 or b 6= 0. Let us consider
each case separately:

1. If a 6= 0. Then define z = x+ x̄ = 2a. Then Az = A(x+ x̄) = λx+ λx̄, which is equal
to λ(x+ x̄) = λz. Therefore, z is a real non-zero vector such that Az = λz.

2. If b 6= 0. Then define z = i(x − x̄) = −2b. Then Az = iA(x − x̄) = i(λx − λx̄) = λz.
Therefore, z is a real non-zero vector such that Az = λz.

The spectral theorem shows that every symmetric matrix is diagonalizable.

Definition 8.2.4. An matrix m× n matrix is orthogonal if AtA = I.

Notice that orthogonal matrices satisfy the property that At = A−1.

Theorem 8.2.4 (Spectral Theorem). Let A be an n × n symmetric matrix. There exists
an orthogonal matrix Q such that A = QtΛQ where Λ is a diagonal matrix whose diagonal
components are eigenvalues of A.

Proof. We only need to show A has n orthogonal eigenvectors. Let λ1 = max∥v∥=1 v
TAv

and v1 ∈ argmax∥v∥=1 v
TAv. Define W1 = span{v1} = {c1v1|c1 ∈ Rn}. We show λ1 is an

eigenvalue of A and v1 is a corresponding eigenvector. Notice if we know Av1 = c1v1 for
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some c1 and λ1 = vT1 Av1 = c1v
T
1 v1 = c1 showing λ1 is indeed an eigenvalue. Hence we only

need to show Av1 ∈ W1. We show this by showing Av1 ⊥ W⊥
1 . For any arbitrary w ∈ W⊥

1 ,
we know

v1 + aw

‖v1 + aw‖
=

v1 + aw√
1 + a2‖w‖2

is a normal vector for any a ∈ R. Hence by definition of v1, we have

vT1 Av1 ≥
1

1 + a2‖w‖2
(v1 + aw)TA(v1 + aw)

=
vT1 Av1 + 2avT1 Aw + a2wTAw

1 + a2‖w‖2

for all a ∈ R, where the equality comes from the assumption that A is symmetric. But
for this inequality to hold for all a, we must have vT1 Aw = 0 otherwise we can always find
arbitrary small a such that this inequality is violated. Since w ∈ W⊥

1 is arbitrary, we showed
Av1 ∈ W1.

Suppose we have defined v1, · · · , vk and λ1, · · · , λk. Let

vk+1 ∈ arg max
v∈span⊥{v1,··· ,vk}

∥v∥=1

vTAv,

λk+1 = max
v∈span⊥{v1,··· ,vk}

∥v∥=1

vTAv

and Wk+1 = span{vk+1}. Then we can apply the same logic to show that Avk+1 ∈ Wk+1 and
thus Avk+1 = λk+1vk+1. Since this is finite dimensional, we can complete this process when
k = n. This completes the proof.
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8.3 Exercises
Let P be an n × n matrix. Define a stochastic matrix P as an n × n matrix that has non-
negative entries where the entries of each column sum to one. Let π be a non-negative vector
whose entries sum to one. Show that π does not belong to the kernel. Further show that
Pπ is a vector whose entries sum to one

1. This questions studies the convergence properties of stochastic matrices:

(a) (3 points) Now suppose that limm→∞ Pm → P ∗. Show that P ∗ is also a markov
matrix and show that π does not belong to its kernel. (Hint: Show that every P n

is markov).

(b) (5 points) Suppose that P ∗ is such that for every π, P ∗π = π∗, for a fixed π∗.
Write down what the matrix P ∗ has to be for π∗ = (0.2, 0.3, 0.4, 0.1) if P ∗ is 4× 4.

(c) (2 points) Construct an example of a 2 × 2 symmetric matrix P that doesn’t
converge. (Hint use zeros and ones only). Compute its eigenvalues. Use the
spectral decomposition to give a reason why it doesn’t converge.

(d) (3 points) Show that the following asymmetric P converges to a P ∗ such that
P ∗π = π∗. Compute P ∗ and π∗.

P =

[
0.5 0

0.5 1

]

2. This questions asks you to analyze the eigenvalues of stochastic matrices:

(a) (3 points) Let v ∈ Rn. Show that the entries of the vector Pv add up to
∑n

j=1 vj.

(b) (9 points) Let v∗ ∈ Rn, v 6= 0 be an eigenvector of P , with corresponding eigenvalue
λ. Prove the following statements:

i. (1 point) P sv∗ = λsv∗, s ∈ N.
ii. (4 points) Show that if

∑n
j=1 v

∗
j 6= 0, then λ = 1. [Hint: show that P s is also

markov].
iii. (4 points) Show that if

∑n
j=1 v

∗
j = 0, v∗ 6= 0, then |λ| ≤ 1. [Hint: show that

for any fixed v 6= 0 (not necessarily an eigenvector), supP ||Pv|| ≤M <∞, P
markov].
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Part II

Differentiation

98



Chapter 9

Introduction to Differentiation

9.1 Review of Convergence
Recall the definition of convergence from the first part of the course:

Definition 9.1.1. Let f : [a, b]→ R, be a real-valued function, p ∈ [a, b]. We write f(x)→ q

as x→ p or limx→p f(x) = q if there exists q ∈ R with the following property: ∀ϵ > 0 there
exists δ > 0 such that:

|f(x)− q| < ϵ, ∀x ∈ (p− δ, p+ δ) ∩ [a, b], x 6= p

Definition 9.1.2. limx↓p f(x) = q if ∃q ∈ R such that ∀ϵ > 0, ∃δ > 0 such:

|f(x)− q| < ϵ, ∀x ∈ (p, p+ δ) ∩ [a, b]\{p}

The following theorem gives four different characterizations to the definitions above:

Theorem 9.1.1 (Equivalent Limit Definitions). Let f : [a, b]→ R, be a real-valued function,
p ∈ [a, b]. The following are equivalent:

1. limx→p f(x) = q

2. limn→∞ f(xn) = q, for every sequence {xn}∞n=0, xn 6= p such that limn→∞ xn = p

3. limx↓p f(x) = limx↑p f(x) = q

4. limn→∞ f(x+n ) = limn→∞ f(x−n ) = q, ∀{x+n }∞n=0, ∀{x−n }∞n=0 such that x+n > p > x−n and
x+n , x

−
n converge to p.
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5. limx→p |f(x)− q| = 0.

These equivalences are proven in the Appendix. They will be very useful when we want
to show whether a function is differentiable or not. This will become clear soon.

Definition 9.1.3. The function f is continuous at some point c of its domain [a, b] if

lim
x→c

f(x) = f(c).

Theorem 9.1.2 (Change of Variable). If there exists q ∈ R such that limy→y0 h(y) = q and
f(x0) = y0 and f is a continuous function, then limx→x0 h(f(x)) = limy→y0 h(y).

Proof. Let xn ∈ R be a convergent sequence such that xn → x0. Then yn = f(xn) is a
convergent sequence because f is continuous (using the second definition), which converges
to y0 = f(x0). If limy→y0 h(yn) = q that means that for every sequence yn such that yn → y0,
limyn→y0 h(yn) = q.

9.2 Definition of Differentiability
Definition 9.2.1. Let f : [a, b] → R, be a real-valued function. We say that f is differen-
tiable at x0 ∈ [a, b] if the limit:

lim
x→x0

f(x)− f(x0)
x− x0

exists and is finite. We denote it by:

f ′(x0) := lim
x→x0

f(x)− f(x0)
x− x0

and say that f ′(x0) is the derivative of f at x0. If f is differentiable at every x ∈ [a, b], we
say that f is differentiable.

Given Theorem 9.1.1 we can characterize the derivative of a function as:

Theorem 9.2.1. Let f : [a, b]→ R, be a real-valued function, x0 ∈ [a, b]. The following are
equivalent:

1. f is differentiable at x0, with derivative f ′(x0)

2. limn→∞
f(xn)−f(x0)

xn−x0 = f ′(x0), for every sequence {xn}∞n=0, xn 6= x0,
such that limn→∞ xn = x0
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3. limx↓x0
f(x)−f(x0)

x−x0 = limx↑x0
f(x)−f(x0)

x−x0 = f ′(x0)

9.2.1 Examples

The following example computes the derivative of some common functions and shows some
functions that are not differentiable.

Example 6. 1. Let c ∈ R and f(x) = c. Then f ′(x) = 0, ∀x ∈ R.

2. Let n ≥ 1 and f(x) = xn. Then f ′(x) = nxn−1.

3. Let f(x) = ex. Then f ′(x) = ex.

4. f(x) = |x| is not differentiable at x = 0.

5. f(x) =

x · sin( 1x) if x 6= 0

0 if x = 0
is not differentiable at x = 0.

Proof.

1. f(x) = c:

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

= lim
x→x0

c− c
x− x0

= 0

2. f(x) = xn:

f(x)− f(x0) = xn − xn0
= (x− x0) · (xn−1 + xn−2x0 + xn−3x20 + . . .+ x · xn−2

0 + xn−1
0 )

= (x− x0)
n−1∑
k=0

xkxn−k−1
0

Then,

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

= lim
x→x0

n−1∑
k=0

xkxn−k−1
0

=
n−1∑
k=0

xk0x
n−k−1
0

= nxn−1
0
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3. f(x) = ex:

lim
x→x0

f(x)− f(x0)
x− x0

= lim
x→x0

ex − ex0
x− x0

= ex0
(
lim
x→x0

ex−x0 − 1

x− x0

)
= ex0

(
lim
x→0

ex − 1

x

)

Recall the definition of e,
e := lim

y→0
(1 + y)1/y

Using the continuity of log at 1,

lim
y→0

log(1 + y)1/y = lim
y→0

1

y
log(1 + y) = 1

Using the continuity of 1/x at 1,

lim
y→0

y

log(1 + y)
= 1

Defining x = log(1 + y),
lim
x→0

ex − 1

x
= 1

Thus,
f ′(x0) = lim

x→x0

f(x)− f(x0)
x− x0

= ex0
(
lim
x→0

ex − 1

x

)
= ex0

4. f(x) = |x|:

We prove it using the characterizations given by Theorem 9.2.1:

lim
x↓x0

f(x)− f(0)
x

= 1 6= lim
x↑x0

f(x)− f(0)
x

= −1

Given that the limits from above and from below are not equal to each other, the
function is not differentiable at 0.

5. f(x) =

x · sin( 1x) if x 6= 0

0 if x = 0
:
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f(x)− f(0)
x

=
x sin( 1

x
)

x
= sin

(
1

x

)
Consider the sequences xn = 1

2nπ
and yn = 1

2nπ+π/2
, n ∈ N. They both converge to 0.

sin(1/xn) = sin(2nπ) = 0, n ∈ N

sin(1/yn) = sin(2nπ + π/2) = 1, n ∈ N

By Theorem 9.2.1, f is not differentiable.

Below lists several useful differentiation rules without proof.

Theorem 9.2.2. Suppose f, g : [a, b] → R, be real-valued functions, differentiable at x0 ∈
[a, b] and k ∈ R. Then:

1. (kf)′(x0) = kf ′(x0)

2. (f + g)′(x0) = f ′(x0) + g′(x0)

3. (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

4. if g(x0) 6= 0, then
(
f
g

)′
(x0) =

f ′(x0)g(x0)−g′(x0)f(x0)
g(x0)2

Proof. See Rudin et al. (1964)

Example 7. Let n ≥ 1 and f(x) = xn. Then f ′(x) = nxn−1. Here we provide an easier
proof using the product rule.

Proof. By induction. For the base case, n = 1:

f(x) = x, f ′(x0) = lim
x→x0

x− x0
x− x0

= 1 = nxn−1
0

Assume it holds for n = k:
f(x) = xk, f ′(x0) = kxk−1

0

For n = k + 1:
f(x) = xk+1 = x · xk
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Using the product rule in Theorem 9.2.2,

f ′(x0) = 1 · xk0 + x · kxk−1
0 = xk0 + kxk0 = (k + 1)xk0

9.3 Differentiability Implies Continuity
The following theorem states the relationship between continuity and differentiation of a
function.

Theorem 9.3.1. Let f : [a, b] → R, be a real-valued function, differentiable at x0 ∈ [a, b].
Then f is continuous at x0.

Proof.

f(x) = f(x) + f(x0)− f(x0) (9.1)

= f(x0) +

(
f(x)− f(x0)

x− x0

)
· (x− x0) (9.2)

Taking limits when x→ x0,

lim
x→x0

f(x) = f(x0) + lim
x→x0

(
f(x)− f(x0)

x− x0

)
· (x− x0) (9.3)

Given that limx→x0

(
f(x)−f(x0)

x−x0

)
exists and is finite and limx→x0 x− x0 = 0,

⇒ lim
x→x0

f(x) = f(x0)

Note that the converse of this theorem is not true. That is, if a function f : [a, b]→ R is
continuous at some point x0 ∈ [a, b], it need not be differentiable at that point. For example,
the function

f(x) =

x · sin( 1x) if x 6= 0

0 if x = 0

is continuous at 0, but is not differentiable at that point. Here is another simpler example.
f(x) = |x| is continuous at x = 0 but not differentiable at x = 0.
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9.4 First Order Conditions
Definition 9.4.1. Let f : A→ R, where A ⊆ R.

1. x0 ∈ A is a global maximum of f if f(x0) ≥ f(x), ∀x ∈ A

2. x0 ∈ A is a global minimum of f if f(x0) ≤ f(x), ∀x ∈ A

3. x0 ∈ A is a local maximum of f if ∃δ > 0 such that f(x0) ≥ f(x), ∀x ∈ A ∩ (x0 − δ, x0 + δ)

4. x0 ∈ A is a local minimum of f if ∃δ > 0 such that f(x0) ≤ f(x), ∀x ∈ A ∩ (x0 − δ, x0 + δ)

Theorem 9.4.1. Let f : [a, b] → R. If f has a local maximum (minimum) at x0 ∈ (a, b)

and f is differentiable at x0, then f ′(x0) = 0.

Proof. Let f have a local maximum at x0 ∈ (a, b). Then, there exists a δ > 0 such that:

• For all x ∈ (x0, x0 + δ):

f(x)− f(x0)
x− x0

≤ 0 ⇒ lim
x↓x0

f(x)− f(x0)
x− x0

≤ 0

• For all x ∈ (x0 − δ, x0):

f(x)− f(x0)
x− x0

≥ 0 ⇒ lim
x↑x0

f(x)− f(x0)
x− x0

≥ 0

The limits exist, given that f is differentiable at x0. By Theorem 9.2.1,

0 ≤ f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

≤ 0

Comment 1. The reserve is not true. A counterexample is f(x) = x3. Note that
f ′(0) = 0 but 0 is not a local maximum or minimum.

Comment 2. The assumption of differentiability is important. If we drop the condition
on differentiability, the result is no longer true. A counterexample is f(x) = |x|. Note that 0
is indeed a local minimum (actually a global minimum) of f(x), but the derivative at x = 0

is not zero, simply because it is not even differentiable at x = 0.
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9.5 Intermediate Value Theorem
Theorem 9.5.1 (Intermediate Value Theorem for Derivatives). Let f : [a, b]→ R continuous
and differentiable on [a, b]. If f ′(a) < λ < f ′(b), there exists x ∈ (a, b) such that f ′(x) = λ.

Proof. Let λ such that f ′(a) < λ < f ′(b). Define g(t) := f(t)− λt. Then:

g′(t) = f ′(t)− λ, g′(a) < 0, g′(b) > 0

This means that g is decreasing on a and increasing on b, so we can find x1, x2 ∈ (a, b)

such that g(x1) < g(a) and g(x2) < g(b). Thus, g attains a minimum at some x in the
interior of [a, b]. By Theorem 9.4.1, g′(x) = f ′(x)− λ = 0. Then:

f ′(x) = λ

Comment. It is incorrect to invoke the intermediate value theorem for continuous
functions. This is because derivatives are not necessarily continuous. For example, the
function:

f(x) =

x2 · sin( 1x) if x 6= 0

0 if x = 0

is differentiable at every point (notice the difference with a similar example discussed previ-
ously). However, the derivative is not continuous at 0. Although we cannot claim that the
derivative of a function is continuous, derivatives and continuous functions have something
in common: they take on all the intermediate values.
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9.6 Chain Rule
Theorem 9.6.1 (Chain rule). Let I and J be two intervals in R. Let f : I → R and
g : J → R, f(I) ⊆ J . If f is differentiable at x0 ∈ I and g is differentiable at f(x0) ∈ J ,
then:

(g ◦ f)′(x0) = g′(f(x0))f
′(x0)

Proof. Define the residuals for x 6= x0, y 6= y0:

r(x; x0) = f(x)− f(x0)− f ′(x0)(x− x0)

u(y; y0) = g(y)− g(y0)− g′(y0)(y − y0)

By the definition of differentiability of f and g:

lim
x→x0

r(x, x0)

x− x0
= lim

x→x0

[
f(x)− f(x0)

x− x0
− f ′(x0)

]
= 0

lim
y→y0

u(y, y0)

y − y0
= lim

y→y0

[
g(y)− g(y0)
y − y0

− f ′(y0)

]
= 0

Before we take limits, we rewrite the expression for the slope of (g ◦f)(x0). Let y = f(x):

g(f(x))− g(f(x0))
(x− x0)

=
g(y)− g(y0)
(x− x0)

=
g′(y0)(y − y0) + u(y; y0)

(x− x0)
Rewriting u(y; y0)

=

[
g′(y0) +

u(y; y0)

(y − y0)

]
(y − y0)
(x− x0)

Factorizing (y − y0).

=

[
g′(y0) +

u(y; y0)

(y − y0)

]
(f(x)− f(x0))

(x− x0)
Substituting y = f(x)

=

[
g′(y0) +

u(y; y0)

(y − y0)

] [
f ′(x0) +

r(x; x0)

x− x0

]
Rewriting r(x; x0)

This means that overall slope of (g ◦ f) between x0 and x is equal to the multiplication
of the slope of g between y0 and y times the slope of f between x0 and x. We can take limits
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on both sides:

lim
x→x0

g(f(x))− g(f(x0))
(x− x0)

= lim
x→x0

[
g′(y0) +

u(y; y0)

(y − y0)

]
lim
x→x0

[
f ′(x0) +

r(x; x0)

x− x0

]
In order to distribute the limits we need to show that the individual limits exists and are
finite, using the property that we used for r(x; x0) and u(y; y0).

lim
x→x0

[
f ′(x0) +

r(x; x0)

x− x0

]
= f ′(x0) + lim

x→x0

[
r(x; x0)

x− x0

]
= f ′(x0)

lim
x→x0

[
g′(y0) +

u(y; y0)

y − y0

]
= g′(y0) + lim

x→x0

[
u(y; y0)

y − y0

]
= g′(f(x0))

The last result follows by using Theorem 9.1.2, setting h(y) = u(y;y0)
y−y0 . Therefore limx→x0

[
u(f(x);y0)
f(x)−f(x0)

]
=

limy→y0

[
u(y;y0)
y−y0

]
. This completes the proof, because it shows that:

lim
x→x0

g(f(x))− g(f(x0))
(x− x0)

= g′(y0)f
′(x0) = g′(f(x0))f

′(x0)
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9.7 Properties Appendix: Equivalent Notions of Con-
tinuity

Definition 9.7.1. Let f : [a, b]→ R, be a real-valued function, p ∈ [a, b]. We write f(x)→ q

as x→ p or limx→p f(x) = q if there exists q ∈ R with the following property: ∀ϵ > 0 there
exists δ > 0 such that:

|f(x)− q| < ϵ, ∀x ∈ (p− δ, p+ δ) ∩ [a, b], x 6= p

Proof. 1. We will prove (1) ⇐⇒ (5).

Suppose that for every ϵ > 0 there exists δ > 0 such that :

|f(x)− q| < ϵ, ∀x ∈ (p− δ, p+ δ) ∩ [a, b], x 6= p

Since |f(x)− q| = | |f(x)− q| − 0|, the two notions of convergence are equivalent.

2. We will prove that (1) ⇐⇒ (2).

=⇒ Suppose that limx→p f(x) = q. We will show that every sequence needs to
converge.

Suppose that not every sequence f(xn) converges to q : ∃{xn}∞n=0, xn 6= p, xn → p such
that ∃ϵ > 0 s.t. ∀N ∈ N, ∃n ≥ N such that d(f(xn), q) > ϵ. However, we also know
that ∀ϵ > 0, ∃δ > 0 such that d(f(x), q) < ϵ for all x ∈ (p−δ, p+δ)∩[a, b]\{p}. Because
xn convergent, we know that for very large n, xn must be contained in (p− δ, p+ δ)∩
[a, b]\{p}. This means that d(f(xn), q) < ϵ for large enough n. This contradicts the
assumption that not every sequence f(xn) converges to q. Therefore, we have shown
that every sequence must converge to q.

⇐= Suppose that it is true that if xn → p then limn→∞ f(xn)→ q. Now we will show
the ϵ− δ definition holds.

Suppose that the either limx→p f(x) does not exist, or it does not converge to q. Then
∃ϵ > 0 such that ∀δ > 0, ∃x ∈ (p−δ, p+δ)∩ [a, b]\{p}, d(f(x), q) > ϵ. This means that
if we set δ = δn = 1/n we can choose an choose xn such that d(f(xn), q) > ϵ. Because
δn → 0, xn → p, xn 6= p. However, because every f(xn) converges to q, for large n then
d(f(xn), q) < ϵ. This generates a contradiction with how xn was defined. Therefore,
limx→p f(x) must exist and be equal to q.

3. Now we will prove (1) ⇐⇒ (3).
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=⇒ Suppose that if limx→p f(x) = q. Since (p, p+ δ) ⊂ (p− δ, p+ δ) it always follows
that ∃δ > 0 such that d(f(x), q) < ϵ, for all x ∈ (p, p+ δ) ∩ [a, b]\{p}.

⇐= If limx↑p f(x) = limx↓p f(x) = q, then ∀ϵ > 0, ∃δ1, δ2 > 0 such that:

d(f(x), q) < ϵ, ∀x ∈ V1 = (p, p+ δ1) ∩ [a, b]\{p}

d(f(x), q) < ϵ, ∀x ∈ V2 = (p− δ, p+ δ2) ∩ [a, b]\{p}

Then set δ∗ = min{δ1, δ2}. Then V ∗ = (p−δ∗, p+δ∗)∩ [a, b]\{p} ⊂ V1∩V2. Therefore,
d(f(x), q) < ϵ, ∀x ∈ V ∗. This completes the proof.

4. Now we will prove (2) ⇐⇒ (4).

=⇒ Suppose that it is true that if xn → p then limn→∞ f(xn)→ q. Then since x+n ad
x−n are special cases of this type of sequence, then limn→∞ f(x+n ) = limn→∞ f(x−n ) = q.
⇐= Now suppose that limn→∞ f(x+n ) = limn→∞ f(x−n ) = q for all x+n and x−n . Let xn
be an arbitrary convergent sequence (with values potentially above and below p). Now
construct two sub-sequences f(x−n ) and f(x+n ), that separate the terms in xn that are
below and above p, respectively. You start off with the first element in xn, if it is below
p assign it to x−n , otherwise to x+n . Repeat this process for all xn in order to construct
a sequence. That means that ∀ϵ > 0, ∃N1 such that ∀n ≥ N1, d(f(x

−
n , q)) < ϵ and ∃N2

such that ∀n ≥ N2, d(f(x
+
n ), q) < ϵ. Let N∗ > N1+N2. Then ∀n ≥ N∗, d(f(xn), q) < ϵ.

Since we found an N∗ for every ϵ > 0, then f(xn) must converge to q.
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9.8 Exercises

1. Let f(x) =

xα sin(1/x) x 6= 0

0 x = 0
. For what values of α is f(x) differentiable at x = 0?

2. Let f, g : R→ R be two functions. Let y0 = g(x0) for some x0 ∈ R. Find examples for
the following cases when:

(a) g is differentiable at x0 and f is not differentiable at y0;

(b) g is not differentiable at x0 and f is differentiable at y0;

(c) g is not differentiable at x0 and f is not differentiable at y0,

but f ◦ g(x) is differentiable.

3. (Exercise 11 on page 186, Pugh) Assume that f : (−1, 1) → R and f ′(0) exists. If
αn, βn → 0 as n→∞, define the different quotient

Dn =
f(βn)− f(αn)

βn − αn
.

(a) Prove that limn→∞Dn = f ′(0) under each of the following conditions (Hint: First
rewrite this expression in terms of f(βn)−f(0)

βn
and f(αn)−f(0)

αn
and use the sequential

definition of the limit.

i. αn < 0 < βn.
ii. 0 < αn < βn and βn

βn−αn
≤M .

iii. f ′(x) exists and is continuous for all x ∈ (−1, 1).

(b) Set f(x) = x2 sin(1/x) for x 6= 0 and f(0) = 0. Observe that f is differentiable
everywhere in (−1, 1) and f ′(0) = 0. Find αn and βn that tend to 0 in such a
way that Dn converges to a limit unequal to f ′(0).
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Chapter 10

Mean Value Theorems

10.1 Mean Value Theorems
Theorem 10.1.1 (Rolle’s Theorem). f : [a, b] → R continuous on [a, b] and differentiable
on (a, b). If f(a) = f(b), then there exists x ∈ (a, b) such that f ′(x) = 0

Proof. Define
x1 = argmin

x∈[a,b]
f(x), m = min

x∈[a,b]
f(x)

x2 = argmax
x∈[a,b]

f(x), M = max
x∈[a,b]

f(x)

• If m =M , f is constant and f ′(x) = 0, ∀x ∈ [a, b]

• If m < M , at least one of x1 or x2 is different from both a and b, given that f(x1) <
f(x2) and f(a) = f(b). Without loss of generality, assume x1 ∈ (a, b). By Theorem
9.4.1, f ′(x1) = 0.

Theorem 10.1.2 (Cauchy’s Mean Value Theorem). Suppose f, g : [a, b]→ R are continuous
and differentiable on (a, b). There exists x0 ∈ (a, b) such that

f ′(x0)(g(b)− g(a)) = g′(x0)(f(b)− f(a))

Proof. Define h(t) := f(t)(g(b) − g(a)) − g(t)(f(b) − f(a)). h is continuous on [a, b], dif-
ferentiable on (a, b) and h(a) = h(b). By Rolle’s Theorem (Theorem 10.1.1), there exists an
x0 ∈ (a, b) such that h′(x0) = 0. This happens if, and only if,

f ′(x0)(g(b)− g(a)) = g′(x0)(f(b)− f(a))
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Theorem 10.1.3 (Mean Value Theorem). Suppose f : [a, b] → R is continuous and differ-
entiable on (a, b). There exists x0 ∈ (a, b) such that

f(b)− f(a) = f ′(x0)(b− a)

Proof. Set g(x) = x in Cauchy’s Mean Value Theorem (Theorem 10.1.2).

Corollary 10.1.1. Let f : [a, b]→ R is continuous, differentiable on (a, b) and

sup
x∈(a,b)

|f ′(x)| ≤M

Then,
|f(x)− f(x′)| ≤M |x− x′|, x, x′ ∈ [a, b]

Proof. Let x, x′ ∈ [a, b], x < x′. By Mean Value Theorem (Theorem 10.1.3) there exists
ζ ∈ (x, x′) such that f(x)− f(x′) = f ′(ζ)(x− x′), and hence

|f(x)− f(x′)| = |f ′(ζ)(x− x′)| = |f ′(ζ)| · |x− x′| ≤M |x− x′|.
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10.2 L’Hospital’s Rule
Theorem 10.2.1 (L’Hospital’s Rule). Suppose f and g are differentiable on (a, b), g′(x) 6=
0, ∀x ∈ (a, b), where −∞ ≤ a ≤ b ≤ ∞. Suppose:

lim
x→a

f ′(x)

g′(x)
= A, −∞ ≤ A ≤ ∞

If either:

1. limx→a f(x) = limx→a g(x) = 0, or

2. limx→a f(x) = limx→a g(x) =∞

Then, limx→a
f(x)
g(x)

= A
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10.3 Derivatives of Monotone Functions
Definition 10.3.1. Let f : I → R. If for all x1, x2 ∈ I s.t. x1 < x2,

1. f(x1) ≤ (≥)f(x2), we say that f is monotonically increasing (decreasing).

2. f(x1) < (>)f(x2), we say that f is strictly monotonically increasing (decreasing).

The next theorem characterizes monotonic functions in terms of their derivatives:

Theorem 10.3.1. Let f : [a, b]→ R continuous and differentiable on (a, b).

1. f is increasing on (a, b) ⇐⇒ f ′(x) ≥ 0, ∀x ∈ (a, b)

2. f is decreasing on (a, b) ⇐⇒ f ′(x) ≤ 0, ∀x ∈ (a, b)

3. f is strictly increasing on (a, b) if f ′(x) > 0, ∀x ∈ (a, b)

4. f is strictly decreasing on (a, b) if f ′(x) < 0, ∀x ∈ (a, b)

Proof. 1. ⇒: f is increasing ⇒ for all x < x′, f(x′)−f(x)
x′−x ≥ 0. Taking limits:

f ′(x) = lim
x′↓x

f(x′)− f(x)
x′ − x

≥ 0

⇐: f ′(x) ≥ 0 for all x ∈ (a, b). Let x1 < x2. By the Mean Value Theorem, there exists
ζ ∈ (x1, x2) such that:

f(x2)− f(x1) = f ′(ζ)(x2 − x1) ≥ 0

Then, f(x2) ≥ f(x1).

2. Analogous to 1.

3. f ′(x) > 0 for all x ∈ (a, b). Let x1 < x2. By the Mean Value Theorem, there exists
ζ ∈ (x1, x2) such that:

f(x2)− f(x1) = f ′(ζ)(x2 − x1) > 0

Then, f(x2) > f(x1).

4. Analogous to 3.
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Note that 3. and 4. go only in one direction: if the derivative is strictly positive (neg-
ative), the function is strictly increasing (decreasing). However, a function that is strictly
increasing (decreasing) does not necessarily have strictly positive (negative) derivative at
every point in the domain. An example of such a function is f(x) = x3. In this case, f is
strictly increasing, although f ′(0) = 0.

10.4 Inverse Function Theorem
Theorem 10.4.1 (Inverse Function Theorem). Let f : (a, b) → (c, d) be surjective, contin-
uous and differentiable on (a, b), and f ′(x) 6= 0, ∀x ∈ (a, b). Then f is a homeomorphism
and its inverse f−1 is differentiable, with:

(f−1)′(y) =
1

f ′(f−1(y))

Proof. If f ′(x) 6= 0, ∀x ∈ (a, b), by the Intermediate Value Theorem for Derivatives, f ′(x)

is either positive for all x ∈ (a, b), or negative. Assume, without loss of generality, that
f ′(x) > 0, ∀x ∈ (a, b).

Let a < x1 < x2 < b. By the Mean Value Theorem, there exists ζ ∈ (x1, x2) such that:

f(x2)− f(x1) = f ′(ζ)(x2 − x1) > 0

Then, f is strictly monotonically increasing, so it is injective. Since, by assumption, it is
also surjective, its inverse f−1 exists and is well defined. Moreover, since f is differentiable,
it is continuous on (a, b).

Now, lets prove that a strictly monotonic and continuous function is a homeomorphism.
Let y0 ∈ (c, d) and ϵ > 0. Denote x0 = f−1(y0) and define y− = f(x0−ϵ) and y+ = f(x0+ϵ).
Let δ = min{|y+ − y0| , |y− − y0|}.

Since f is monotonic, f−1 is also monotonic, so f−1(y0+ δ) ≤ x0+ ϵ, f−1(y0− δ) ≥ x0− ϵ
and f−1(y0 − δ, y0 + δ) is an interval. Moreover, f is continuous, so f−1(y0 − δ, y0 + δ) is an
open set, which means that f−1(y0− δ, y0 + δ) ⊆ (x0− ϵ, x0 + ϵ), so f−1 is continuous and f
is a homeomorphism.
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Now, lets show that:
(f−1)′(y) =

1

f ′(f−1(y))

Let x0 = f−1(y0), x = f−1(y).

(f−1)′(y0) = lim
y→y0

f−1(y)− f−1(y0)

y − y0
(10.1)

= lim
x→x0

x− x0
f(x)− f(x0)

(10.2)

=
1

f ′(x0)
(10.3)

=
1

f ′(f−1(y0))
(10.4)

The second equality is true because f−1 is continuous, which implies that y → y0 if and
only if x→ x0.

Example 8. Let y = sin(x), x ∈ (−π/2, π/2). Find (f−1)′(y).

Proof. f−1(y) = arcsin(y). Then, by the Inverse Function Theorem:

(f−1)′(y) =
1

cos(arcsin(y))
=

1√
1− sin2(arcsin(y))

=
1√

1− y2
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10.5 Application: Auctions
In this section we present an example that applies the Chain Rule and the Inverse Function
Theorem. We present the economic context first to establish where the problem arises. We
then present a purely mathematical formulation which simplifies some features of the actual
problem so that the application of the theorems is more transparent.

10.5.1 Economic Context

A single object is traded at an auction with two potential bidders, i ∈ {1, 2}. Each individual
has a valuation for the object, vi ∈ [0, 1], which represents the maximum amount they are
willing to pay for the object. Valuations are private, which means that bidder i does not
know the valuation of bidder j. They are also independent. which means that bidder i
cannot infer any additional information about vj, based on his own realization. Both players
know the probability distribution of (vi, vj). At the time of the auction, each individual must
decide an amount bi to bid. The rules for allocating the object follow a first price auction.
Whoever bids the highest amount pays bi and receives the object. Losers do not have to
pay and do not receive the object. The optimal bid depends on i′s beliefs about the other
player’s strategy.

We will state this problem in a mathematical form so that we can apply some of the
differentiation techniques in this chapter. The function we want to optimize is:

U(b, v) = (v − b)P(b > σ(vj))

A bidder’s expected utility is the net amount that a bidder receives if she wins the auction
(v − b) times the probability of winning. The utility function captures the main trade-off in
auctions: If you bid higher then you have a higher probability of winning the object but you
also receive a lower net payoff in the event that you win.

The probability depends on the strategy of the other player, σ(vj), which is a function
of her valuation. Let F be the cumulative density function of vj, which is assumed to be
strictly increasing (the variable is continuous).
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10.5.2 Mathematical Formulation

After some manipulations the problem can be rewritten as:

U(b) = (v − b)F (σ−1(b))

where v is a constant. Define the supremum of the function as

U∗ = sup
b∈R+

U(b)

We formulate assumptions on the functions, sometimes referred to as regularity condi-
tions, which ensures that some of the objects that we are analyzing have desirable properties.

Assumption 10.5.1. (Regularity Conditions)

(a) The function F : R+ → R+ is twice differentiable and F ′ > 0.

(b) The function σ : R+ → R+ is surjective, continuous on R+, differentiable on R++ and
its derivative is strictly positive.

(c) F (σ−1(0)) = 0.

Let us analyze what these regularity conditions. First, the positive derivative ensures
that F, σ are strictly increasing and therefore F−1(σ−1(b)) is strictly increasing. This ensures
that there is a tradeoff: Bidding more increases the value of F (σ−1(b)) and decreases (v− b).
Such an economic trade-off guarantees that the problem has an interior solution. The second
derivatives are required so that we can apply our theorems. The last condition states the
probability of winning the auction if you bid zero, is also zero.
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10.5.3 Existence Interior Solution

First we show that the problem has an interior solution when v > 0.

Lemma 10.5.1. (Existence Solution) Suppose that 10.5.1 holds. For each valuation v ∈
[0, 1], there exists an optimal bid 0 ≤ b∗(v) ≤ v such that U(b∗) = U∗. Furthermore, if the
valuation is zero then the optimal bid is zero, b∗(0) = 0. If the valuation is positive, v > 0,
then the bid is also positive b∗(v) > 0.

Proof. We break down the proof into multiple parts. Define h(b) := F (σ−1(b)).

(a) The function h(b) is strictly increasing.

By Lemma 10.3.1, F ′ > 0 and σ′ > 0 implies that F, σ are increasing. By the Inverse
Function Theorem, the inverse of σ exists and

(σ−1)′(b) =
1

σ′(σ−1(b)

Since σ′ > 0 for every point on its domain and it is surjective, then (σ−1)′(b) > 0 for
all b ∈ R+. Since the composite of two strictly increasing functions is also increasing,
F (σ−1(b)) is strictly increasing in b.

(b) Choices b > v are suboptimal.

Suppose that we set b = v, then U(b) = 0. For b > v ≥ 0, F (σ−1(b)) > F (σ−1(0)) = 0

because the function is strictly increasing. Furthermore, for b > v, the term (b − v) is
strictly negative by construction. Therefore U(b) < 0 for all b > v. That means that it
cannot be optimal to choose any b > v.

(c) Existence optimal 0 ≤ b∗(v) ≤ v for all v ≥ 0

That means that without loss of generality we can restrict attention to the interval
[0, v], which is a compact set. We can also show that U(b) is continuous because it is
the composite of continuous functions. By the extreme value theorem, there exists a
b∗ ∈ [0, v] such that U(b∗) = U∗.

(d) Special Cases If v = 0, then b∗(0) ∈ [0, 0]. Therefore b∗(0) = 0. Now we consider the
case where v > 0. If b = 0 or b = v, then U(b) = 0. If b̃ = v/2 then h(b̃) > 0 and
b− v > 0. This implies that U(b̃) > 0. This does not imply that b̃ is optimal, but rather
that the corner solutions are suboptimal. That means that b∗(v) ∈ (0, v).
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10.5.4 First Order Conditions

Lemma 10.5.2. Suppose that 10.5.1 holds, then b∗(v) solves the following first order condi-
tions.

(v − b)F ′(σ−1(b))
∂

∂b
σ−1(b) + (−b)F (σ−1(b)) = 0

Proof. In the previous lemma we showed that b∗(v) is an interior maximum. Therefore,
we can use the first order conditions to identify it. Let U(b) = (v − b)h(b) where h(b) :=

F (σ−1(b)). Then using the product rule:

U ′(b) = (v − b)h′(b)− h(b) = 0

Using the chain rule:

(v − b)F ′(σ−1(b))(σ−1)′(b)− h(b) = 0

Using the inverse function theorem and plugging in the definition of h(b):

(v − b)F ′(σ−1(b))
1

σ′(σ−1(b))
− F (σ−1(b)) = 0 (10.5)
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10.6 Exercises
1. In the auctions example.

(a) Assume in addition that σ(v) is a function such that ∀v ∈ [0, 1], b∗(v) = σ(v) (there
is a symmetric equilibrium). Use Equation 10.5 to show that:

σ(v) = v − σ′(v)
F (v)

F ′(v)

The right hand side is called the virtual value.

(b) Using the above equation and the signs of the derivatives, show that if ∀v ∈
[0, 1], b∗(v) = σ(v) then ∀v ∈ [0, 1], σ(v) ≤ v (this show that in a symmetric
equilibrium everyone bids weakly below their valuation).

2. Assume f function is continuous on [0,∞) and differentiable on (0,∞). Suppose
f(0) = 0 and f ′ is increasing on (0,∞). Prove

g(x) =
f(x)

x

is increasing on (0,∞).
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Chapter 11

Taylor Expansion

In this section we will explore the properties of higher derivatives. We will prove Taylor’s
theorem which concerns the fit of polynomial approximations of a function around a certain
point. The theorem has wide applicability in economics, with two main uses. First, it is used
for its desirable approximation properties. In econometrics it used as a tool to deal with
non-linear criterion functions and derive the asymptotic distributions of estimators. This and
other types of approximations are used in macroeconomics to compute numerical solutions
to macro-models. Second, it is used as a tool to analyze the signs of the derivatives. At the
end of the chapter we give an example where Taylor’s theorem can be used to characterize
risk averse consumers. Taylor’s theorem is a powerful tool that requires differentiability of
the function up to a certain order.

This chapter is organized as follows. We start of with a definition of higher-order deriva-
tives. In the remainder of the chapter we prove Taylor’s theorem by breaking down each of
its components. First, we analyze the properties of polynomial approximations, which are
proven primarily with algebraic manipulations. Second, we prove a recursive version of the
mean value theorem. Finally, we prove the main statement of Taylor’s theorem incorporating
the previous steps.

Definition 11.0.1. Let f : (a, b) → R be a real-valued function. Let x ∈ (a, b) and define
f (0)(x) = f(x). Suppose that f (m) : (a, b) → R exists. We say that f (m) is differentiable at
x0 ∈ (a, b) if there exists a finite L ∈ R such that:

lim
x→x0

∣∣∣f (m)(x)− f (m)(x0)

x− x0
− L

∣∣∣ = 0

We define f (m+1)(x0) := L as the (m + 1)th order derivative of f evaluated at x0. If f (m) is
differentiable at every x ∈ (a, b), we say that f is (m+ 1)−order differentiable.
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11.1 Polynomial Approximation
Definition 11.1.1. Suppose that f : (a, b) → R is M−order differentiable. Define the
M−order Taylor approximation at x ∈ (a, b):

P (h) :=
M∑
m=0

f (m)(x)hm

m!
= f(x) + f (1)(x)h+ . . .+

f (M)(x)hM

M !

We present the following illustration of the Taylor approximation and its derivatives with
respect to h for a 2-order differentiable function.

P (h) = f(x) + f (1)(x)h+
1

2
f (2)(x)h2

P (1)(h) = f (1)(x) + f (2)(x)h

P (2)(h) = f (2)(x)

This leads to a set of interesting properties. For example, P (s)(0) = f (s)(x) for s ∈
{0, . . . ,M}. Notice that the terms f (s)(x) are fixed coefficients, the only thing that varies is
h. Some of the terms vanish with higher s because the derivative of a constant term is zero.
We formalize these results for arbitrary M .

Lemma 11.1.1. Suppose that f : (a, b) → R is M−order differentiable and suppose that
P (h) is the Taylor approximation at x ∈ (a, b). Define R(h) := f(x + h) − P (h). Then
P (h), R(h) are M-order differentiable functions and for 0 ≤ s ≤M .

1. P (s)(h) =
∑M

m=s
f (m)(x)hm−s

(m−s)! .

2. R(s)(h) = f (s)(x+ h)− P (s)(h).

Proof. We will prove each part of the theorem separately.

1. We show the first part by induction. If s = 0 then the result follows by the definition
of P (h). Now suppose that it holds for some 0 ≤ s ≤ M − 1. That means that
P (s)(h) =

∑M
m=s

f (m)(x)hm−s

(m−s)! . This is a polynomial in h, which is differentiable. The
terms f (m)(x) are fixed coefficients that do not depend on h. We will show that it
holds for s+ 1.

Since s ≤M − 1, we can decompose it as

P (s)(h) = f (s)(x) +
M∑

m=(s+1)

f (m)(x)hm−s

(m− s)!
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The derivative of the first term is zero because it does not depend on h. For (m−s) ≥ 1

we can differentiate each power term (m − s)hm−s as the derivative (m − s)hm−s−1.
Then the derivative exists and is equal to

P (s+1)(h) =
M∑

m=(s+1)

f (m)(x)hm−(s+1)

(m− (s+ 1))!

2. We need to differentiate the term f(x+ h) with respect to h. Notice that x is fixed in
this formulation. The chain rule is a good tool to address this issue.

Define g(h) := x + h and w(h) := f(x + h) = f(g(h)). For s = 0, w(0) = w(h) =

f 0(x + h). Suppose that it holds for 0 ≤ s ≤ M − 1. Then w(s) = f (s)(x + h).
The derivative is g(1)(h) = 1. Since s ≤ M − 1, the derivative of f (s)(y) exists by
assumption of the theorem. Given that both derivatives exist, we can use the chain
rule in Theorem 9.6.1 to show that ws+1(h) = f (s+1)(g(h))g(1)(h) = f (s+1)(x+ h).

We can then combine the two results to show that

R(s)(h) = w(s)(h)− P (h) = f (s)(x+ h)− P (s)(h)

Corollary 11.1.1 (Properties Taylor Residual). Suppose that the assumptions of Lemma
11.1.1 hold, then

(a) For all 1 ≤ s ≤M , R(s)(0) = 0.

(b) R(M−1)(h) = f (M−1)(x+ h)− f (M−1)(x)− fM(x)h.

Proof. (a) By Lemma 11.1.1, P (s)(h) =
∑M

m=s
f (m)(x)hm−s

(m−s)! . If m = s, then h0 = 1. Other-
wise, if m > s, then hm−s = 0 evaluated at h = 0. Therefore, since 0! = 1,

P (s)(0) =
f s(x)

0!
= f s(x)

We can use the second part of the lemma to show that R(s)(0) = f (s)(x + 0) − P (s)(0) =

f (s)(x)− f (s)(x) = 0.
(b) P (M−1)(h) =

∑M
m=M−1

f (m)(x)hm−M

(m−M)!
, which is equal to fM−1(x)h0/0! + fM(x)h1/1! =

fM−1(x) + fM(x)h. Therefore the M th derivative of the residual is R(M−1)(h) = f (M−1)(x+

h)− fM−1(x)− fM(x)h using the second part of the Lemma.
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11.2 Recursive Mean Value Theorem
Lemma 11.2.1 (Recursive Mean-Value-Theorem). Suppose that f : (a, b)→ R is M−order
differentiable and suppose that P (h) is the Taylor approximation at x ∈ (a, b). Define
R(h) := f(x+ h)− P (h) and θ0 := h. Suppose that M ≥ 1, then

R(h) = R(s)(θs)
s−1∏
m=0

θm (11.1)

where θm ∈ (0, θm−1) for all 1 ≤ m ≤ s and s ∈ {1, . . . ,M}.

Proof. Assume WLOG that h > 0. By Lemma 11.1.1, R(h) is M−order differentiable. We
will prove this by induction.

(i) For s = 1. by Corollary Properties Taylor Residual (Corollary 11.1.1), R(0) = 0.
Therefore, by the Mean Value Theorem, there exists θ1 ∈ (0, h) such that,

R(h) = R(h)−R(0) = R(1)(θ1)h

Setting θ0 = h completes the definition. If M = 1, then we are done, otherwise, we can
continue.

(ii) Suppose that Equation 11.1 holds for some s ∈ {1, . . . ,M − 1}. We will show that
it holds for s + 1. By Properties Taylor Residual (Corollary 11.1.1), R(s)(0) = 0.
Furthermore, R(s)(h) is differentiable because s ≤ M − 1. Therefore, by the Mean
Value Theorem, there exists θs+1 ∈ (0, θs) such that

Rs(θs) = R(s)(θs)−R(s)(0) = R(s+1)(θs+1)θs

Substituting this into Equation 11.1, we get the equation:

R(h) = R(s)(θs)
s−1∏
m=0

θm Assumption Induction Step

= R(s+1)(θs+1)θs

s−1∏
m=0

θm By the MVT

= R(s+1)(θs+1)
s∏

m=0

θm Grouping Terms
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11.3 Taylor Theorem
Theorem 11.3.1 (Taylor’s Theorem). Let f : (a, b) → R be M-order differentiable and let
P (h) be the associated Taylor polynomial evaluated at x ∈ (a, b). Assume M ≥ 1. Define
R(h) = f(x+ h)− P (h). Then:

(i) limh→0
R(h)
hM

= 0

(ii) P (h) is the only polynomial of degree lower than or equal to M with Property (i).

(iii) If, in addition, f is (M + 1)-th order differentiable, there exists ζ ∈ (x, x + h) such
that:

f(x+ h) = P (h) +
f (M+1)(ζ)hM+1

(M + 1)!

We will break down the proofs into three parts.
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11.3.1 Rate of Convergence

Proof of Taylor Theorem (i). WLOG assume that h > 0. We consider two exhaustive
cases:

(a) If M = 1, then R(h) = f(x+h)−f(x)−f (1)(x)h. Then by definition of differentiability:

lim
h→0

|R(h)|
h

= lim
h→0

∣∣∣f(x+ h)− f(x)
h

− f (1)(x)
∣∣∣ = 0

(b) If M ≥ 2, then proceed with the following proof. In Lemma 11.2.1, set s =M−1. Then
R(h) = R(M−1)(θM−1)

∏M−2
m=0 θm with the property that 0 < θm < θm−1 and θ0 = h. We

can show that θM−1 < θM−2 < . . . < θ0 = h. Taking the absolute value on both sides of
the equation,

|R(h)| =
∣∣∣R(M−1)(θM−1)

M−2∏
m=0

θm

∣∣∣ Absolute Value of Equation 11.1.

= |R(M−1)(θM−1)|
M−2∏
m=0

|θm| Distributing Absolute Value

≤ |R(M−1)(θM−1)|hM−1 Because θm < h, for all m ∈ {1, . . . ,M − 1}

On the other hand, by Properties Taylor Residual (b) RM−1(θM−1) = fM−1(x+θM−1)−
fM−1(x)− fM(x)θM−1. We can reformulate the inequality as follows,

|R(h)|
hM

≤ |R
(M−1)(θM−1)|hM−1

hM
Dividing Inequality by hM

=
|R(M−1)(θM−1)|

h
Cancelling out terms.

≤ |R
(M−1)(θM−1)|
θM−1

Since θM−1 < h.

=
|fM−1(x+ θM−1)− fM−1(x)− fM(x)θM−1|

θM−1

By Properties Taylor Residual.

To complete this part of the proof we apply the definition of M -order differentiability.
Define

u(θM−1) :=
|fM−1(x+ θM−1)− fM−1(x)− fM(x)θM−1|

θM−1

Since f is M -order differentiable, then by Definition 11.0.1,

lim
θM−1→0

u(θM−1) = 0
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The proof is almost complete, but we need to take the limits with respect to h not θM−1

so we have to do some technical manipulations so that we can exchange the limit.

Since limθM−1→0 u(θM−1) exists, then by the sequential definition of a limit, which we
stated in 9.1.1, limn→∞ u(θM−1,n) = 0 for every sequence s.t. θM−1,n → 0.

Let {hn} be an arbitrary sequence such that hn → 0. For every hn choose the corre-
sponding value θM−1,n found in the Recursive Mean-Value-Theorem, which satisfies the
property that 0 < θM−1,n < hn. Therefore θM−1,n converges and therefore

lim
n→∞

u(θM−1,n) = 0

Since the sequence {hn} was arbitrary, that means that limh→0 u(θM−1) = 0 and therefore

lim
h→0

|R(h)|
hM

≤ lim
h→0

u(θM−1) = 0
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11.3.2 Uniqueness of the Approximation

Taylor’s Theorem Part (ii). Let:

P (h) = a0 + a1h+ . . .+ aMh
M

Q(h) = b0 + b1h+ . . .+ bMh
M

where the coefficients in Q(h) are allowed to be zero at this stage. Suppose P 6= Q are two
polynomials such that:

lim
h→0

f(x+ h)− P (h)
hM

= 0

lim
h→0

f(x+ h)−Q(h)
hM

= 0

Then:
f(x+ h)−Q(h)

hM
=
f(x+ h)− P (h)

hM
+
P (h)−Q(h)

hM

which means that limh→0
P (h)−Q(h)

hM
= 0. If this is the case then the polynomial also converges

at slower rates,

lim
h→0

P (h)−Q(h)
hs

= lim
h→0

P (h)−Q(h)
hM

lim
h→0

hM−s = 0, s ∈ {1, . . . ,M}

Suppose that there exists 0 ≤ k ≤M such that ak 6= bk. Let k0 be the smallest such k. Then
for h 6= 0,

P (h)−Q(h)
hk0

=

∑M
k=k0

(ak − bk)hk

hk0
=

M∑
k=k0

(ak − bk)hk−k0

Therefore,
lim
h→0

P (h)−Q(h)
hk0

= ak − bk

Since ak − bk 6= 0, this is a contradiction. Therefore, ak = bk for all k ∈ {1, . . . , r}.
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11.3.3 Form of the Residual

From Properties Taylor Residual (Corollary 11.1.1)

RM−1(h) = fM−1(x+ h)− fM−1(x)− fM(x)h

If fM+1(y) exists, we can differentiate twice with respect to h, we can show that

RM+1(h) = fM+1(x+ h)

From the definition, R(h) = f(x+ h)− P (h). Define g(h) := hM+1. Then we can show that

g(m)(h) =
(M + 1)!

((M + 1)−m)!
hM+1−m, m ∈ {1, . . . ,M + 1}

It follows that g(m)(0) = 0 for all m ∈ {1, . . . ,M}. Then we can use the Cauchy’s Mean
Value Theorem recursively,

R(h)

g(h)
=
R(h)−R(0)
g(h)− g(0)

Because R(0) = g(0) = 0.

=
R(1)(θ1)

g(1)(θ1)
(I) By Cauchy’s Mean Value Theorem

=
R(1)(θ1)−R(1)(0)

g(1)(θ1)
(II) R(1)(0) = 0 by Properties Taylor Residual

=
R(1)(θ1)−R(1)(0)

g(1)(θ1)− g(1)(0)
(III) Because g(1)(0) = 0.

= . . .

=
R(M+1)(θM+1)−R(M+1)(0)

g(M+1)(θM+1)− g(M+1)(0)

=
f (M+1)(x+ θM+1)

(M + 1)!
Plug-in RM+1(θM+1) = f (M+1)(x+ θM+1).

We repeat steps (I)− (III) recursively until we obtain the final expression. To complete
the proof, multiply both sides by g(h) = hM+1.

R(h) =
f (M+1)(x+ θM+1)

(M + 1)!
hM+1
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11.4 Continuous Differentiability
Definition 11.4.1 (Continuous differentiability). Let f : (a, b) → R be a m−order differ-
entiable function. If f (m) is continuous we say that f is m−order continuously differentiable
and denote it by f ∈ Cm.

Because of Theorem 9.3.1, if fm exists then all its lower-order derivatives are continuous.
However, not all differentiable functions are continuously differentiable.

Remark It is important to note that this property was not required to prove Taylor’s
theorem. We only relied on the definition of differentiability.
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11.5 Application: Risk Aversion
Taylor’s theorem can be very useful analyze problems that have sign restrictions. For exam-
ple, in decision theory, risk aversion can be characterized using second derivatives. Suppose
that a consumer is offered a choice between two assets. One asset pays x with complete
certainty. The other pays x+ ϵ with half probability, and x− ϵ with half probability, where
ϵ > 0. In expectation, it pays x. Suppose that U(x) represents a consumer’s utility function.
Then a consumer is said to be risk averse if for all x, ϵ ∈ R,

U(x) ≥ 1

2
U(x+ ϵ) +

1

2
U(x− ϵ) (Risk Aversion)

This captures the idea that a consumer prefers an asset with a certainty rather over a risky
asset, even if both give the same return in expectation. Suppose that we assume that the
utility function U is twice continuously differentiable. What can we say about the sign of
the derivatives?

The following lemma, which is derived using Taylor’s theorem, turns out to be very
useful.

Lemma 11.5.1. Let U : R→ R be twice differentiable. Then for x ∈ (a, b),

lim
ϵ→0

U(x+ ϵ) + U(x− ϵ)− 2U(x)

ϵ2
= U2(x)

Proof. By using the first part of Taylor’s Theorem

U(x+ ϵ) = U(x) + U (1)(x)ϵ+
1

2
U (2)(x)ϵ2 +R1(ϵ)

U(x− ϵ) = U(x)− U (1)(x)ϵ+
1

2
U (2)(x)ϵ2 +R2(ϵ)

Adding these two expressions together and diving by 2, we get

U(x+ ϵ) + U(x− ϵ) = 2U(x) + U (2)(x)ϵ2 +R1(ϵ) + R2(ϵ)

Notice that the terms involving f 1(x) cancel out by construction. If we rearrange the terms
we get

U(x+ ϵ) + U(x− ϵ)− 2U(x)

ϵ2
= U (2)(x) +

R1(ϵ)

ϵ2
+
R2(ϵ)

ϵ2
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By the first part of Taylor’s theorem limϵ→0
R1(ϵ)
ϵ2

= limϵ→0
R2(ϵ)
ϵ2

= 0. Therefore,

lim
ϵ→0

U(x+ ϵ) + U(x− ϵ)− 2U(x)

ϵ2
= U2(x)

This allows us to formulate the following equivalence theorem.

Lemma 11.5.2. Let U be a twice differentiable utility function. Then a consumer is risk
averse if and only if U2(x) ≤ 0 for all x ∈ (a, b).

Proof. =⇒ Suppose that a consumer is risk averse, then for all x, ϵ ∈ R,

U(x) ≥ 1

2
U(x+ ϵ) +

1

2
U(x− ϵ) (Risk Aversion)

By rearranging the equation and dividing by ϵ2 > 0,

U(x+ ϵ) + U(x− ϵ)− 2U(x)

ϵ2
≤ 0

By Lemma 11.5.1 U (2)(x) = limϵ→0
U(x+ϵ)+U(x−ϵ)−2U(x)

ϵ2
. Such a limit exists because U is twice

differentiable. We can show that this is equal to zero by taking the limit on both sides of
the inequality.
⇐= Suppose that U (2)(x) ≤ 0 for all x ∈ R. Then we can use the third part of Taylor’s

theorem:
U(x+ ϵ) = U(x) + U (1)(x)ϵ+

1

2
U (2)(ζ1)ϵ

2, ζ1 ∈ (x, x+ ϵ)

U(x− ϵ) = U(x)− U (1)(x)ϵ+
1

2
U (2)(ζ1)ϵ

2 ζ2 ∈ (x− ϵ, x)

By averaging the two equations and rearranging the terms we can show that

1

2
U(x+ ϵ) +

1

2
U(x− ϵ)− U(x) = 1

2
U (2)(ζ1)ϵ

2 +
1

2
U (2)(ζ2)ϵ

2

The right-hand side is less than or equal to zero because the second derivative is non-positive
regardless of the choice of ζ1, ζ2. Therefore, the consumer is risk averse.

The proof is interesting because we use both parts of Taylor’s Theorem.
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11.6 Properties Appendix: Common Strategies
Polynomial expansions can be manipulated in different ways to highlight different derivatives.
Suppose that we have a twice differentiable function evaluated at two points and expanded
around x,

f(x+ ϵ) = f(x) + f (1)(x)ϵ+
1

2
U (2)(ζ1)ϵ

2, ζ1 ∈ (x, x+ ϵ)

f(x− ϵ) = f(x)− f (1)(x)ϵ+
1

2
U (2)(ζ2)ϵ

2 zeta2 ∈ (x− ϵ, x).

Additive Strategy: Cancels out first derivative. Useful if we know sign of second
derivative.

f(x+ ϵ) + f(x− ϵ) = 2f(x) +
1

2
(U (2)(ζ1) + U (2)(ζ2))ϵ

2

Let f be 3-order differentiable function.

f(x+ ϵ) = f(x) + f (1)(x)ϵ+
1

2
U (2)(x)ϵ2 +

1

6
U (3)(ζ1)ϵ

3, ζ1 ∈ (x, x+ ϵ)

f(x− ϵ) = f(x)− f (1)(x)ϵ+
1

2
U (2)(x)ϵ2 − 1

6
U (3)(ζ2)ϵ

3 ζ2 ∈ (x− ϵ, x).

Subtraction Strategy: Cancels out second derivative. Useful if we know properties of
first and third derivative. Sometimes the first derivative is zero at a local maximum, which
simplifies the equation further.

f(x+ ϵ)− f(x− ϵ) = 2f (1)(x) +
1

3
(U (3)(ζ1) + U (3)(ζ2))ϵ

3.

Transforming Problem Let x1, x2 ∈ R. Then we can always express f(x1), f(x2) in the
above form by choosing x = 1

2
(x1 + x2) and choosing ϵ = x2 − x.
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11.7 Exercises
1. Suppose f : R→ R is twice differentiable. Assume f(0) > 0, f ′(0) < 0 and f ′′(x) < 0

for all x ∈ R. Prove there exists ξ ∈
(
0,− f(0)

f ′(0)

)
such that f(ξ) = 0.

2. Assume f : [a, b]→ R is twice differentiable and f ′(a) = f ′(b) = 0. Prove there exists
ξ ∈ (a, b) such that ∣∣f ′′(ξ)

∣∣ ≥ 4

(b− a)2
∣∣f(b)− f(a)∣∣.

(Hint: expand f
(
a+b
2

)
at a and b respectively)

3. Let f : [a, b] → R be twice differentiable. Assume supx∈[a,b] |f ′′(x)| ≤ M for some
constant M . Assume also f achieves its global maximum at some point x∗ in (a, b).
Prove ∣∣f ′(a)

∣∣+ ∣∣f ′(b)
∣∣ ≤M(b− a).
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Chapter 12

First-Order Differentiation in Rn

12.1 Definition Differentiation
Recall that f : R→ R is differentiable at x ∈ R if the following limit exists and is finite:

lim
h→0

f(x+ h)− f(x)
h

We say that the derivative of f at x is:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

This is equivalent to saying that f is differentiable at x, with derivative f ′(x), if there
exists a function r : R→ R such that:

f(x+ h)− f(x) = f ′(x) · h+ r(h)

And the remainder r is “sublinear”:

lim
h→0

r(h)

h
= 0

Note that, for a given x, the term f ′(x)h is linear in h, so we can interpret the derivative
f ′(x) not as a number, but as a linear operator in R, that maps h to f ′(x)h. This is a natural
way to extend the concept of derivative to Rn:

Definition 12.1.1. Let f : U → Rm, U ⊆ Rn. The function f is differentiable at p ∈ U , if
there exists a linear transformation T : Rn → Rm such that:

f(p+ v)− f(p) = T (v) + R(v)
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and the remainder function R is sublinear:

lim
v→0

‖R(v)‖
‖v‖

= 0

We say that the derivative (also called total derivative or Fréchet derivative) is (Df)p = T .

This is equivalent to saying that f : U → Rm is differentiable at p ∈ U if there exists a
linear transformation T : Rn → Rm such that

lim
v→0

‖f(p+ v)− f(p)− T (v)‖
‖v‖

= 0

Theorem 12.1.1. If f is differentiable at p ∈ U , then the derivative is uniquely determined
by:

(Df)p(u) = lim
t→0

f(p+ tu)− f(p)
t

Proof. Let T be a linear map satisfying f(p+v)−f(p) = T (v)+R(v) and limv→0
∥R(v)∥
∥v∥ = 0.

lim
t→0

f(p+ tu)− f(p)
t

= lim
t→0

T (tu)

t
+
R(tu)

t
(12.1)

= lim
t→0

tT (u)

t
+
R(tu)

t
(12.2)

= T (u) + lim
t→0

R(tu)

t ‖u‖
· ‖u‖ (12.3)

(12.4)

Given that ‖u‖ is finite and R is sublinear, the second term vanishes, so:

lim
t→0

f(p+ tu)− f(p)
t

= T (u)

Since limits are unique, if there are two such transformations T and T ′, they must be equal
to each other: T = T ′.
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12.2 Continuity
Now, we state some of the theorems we saw in the univariate case, extended for the multi-
variate case.

Theorem 12.2.1. Let f : U → Rm, U ⊆ Rn. Suppose f is differentiable at p. Then f is
continuous at p.

Proof. (Df)p : Rn → Rm is a finite linear map, from Rn to a normed vector space Rm.

lim
v→0
‖f(p+ v)− f(p)‖ = lim

v→0
‖(Df)p(v) + R(v)‖ (12.5)

≤ lim
v→0
‖(Df)p‖ · ‖v‖+ ‖R(v)‖ (12.6)

= 0 (12.7)

given that ‖(Df)p‖ <∞, limv→0 ‖v‖ = 0 and limv→0 ‖R(v)‖ = 0.

Theorem 12.2.2. Let f, g : U → Rm, U ⊆ Rn be differentiable at p ∈ U , α ∈ R. Then:

1. (D(f + αg))p = (Df)p + α(Dg)p

2. If f(p) = c, for all p ∈ U , then (Df)p = 0

3. If f : Rn → Rm is a linear mapping, f(v) = Av,A ∈ Rm ×Rn, then A is the Jacobian
matrix for all p ∈ U .

4. If h : R2n → R is a bilinear form, h(p) = pt1Ap2, p =

[
p1

p2

]
∈ R2n, A ∈ Rn × Rn, then

(J)p = [pt2A
t, pt1A].
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12.2.1 Differentiation of Vector Valued Functions

Theorem 12.2.3. Let f : U → Rm, U ⊆ Rn. Then, f is differentiable at p ∈ U if and only
if each of its components fi is differentiable at p. Furthermore, the derivative of the i-th
component is the i-th component of the derivative.

Proof. ⇒: Let f be differentiable and define the projection on the i-th dimension as:

πi : Rn → R, πi(w1, . . . , wi, . . . , wn) = wi

Clearly, πi is linear, so it is differentiable. Then, fi = πi ◦ f is differentiable and:

(Dfi)p = (Dπi)f(p)(Df)p

Moreover, the projection πi can be represented by the 1 × n vector that has 1 in the i-th
component and 0 elsewhere:

A = (0, . . . , 1, . . . , 0)

Thus we know that (Dπi)f(p) is represented by the matrix A. So:

(Dfi)p = A(Df)p = πi ◦ (Df)p

⇐: Suppose each fi is differentiable, with derivative (Dfi)p. Construct:

T =


(Df1)p

...
(Dfm)p



⇒ f(p+ h)− f(p)− T · h =


f1(p+ h)− f1(p)− (Df1)p · h

...
fm(p+ h)− fm(p)− (Dfm)p · h


Taking limits, this converges if and only if each component converges. Therefore, T is indeed
the derivative of f .

This theorem is important, because it shows that what makes calculus in Rn different
from calculus in R is the multidimensionality of the domain, and not of the range.
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12.3 Special Theorems

12.3.1 Chain Rule

Theorem 12.3.1 (Chain Rule). Let U ⊆ Rn and W ⊆ Rm be open sets. Let f : U → Rm

be differentiable at p ∈ U and f(U) ⊆ W . Let g : W → Rl be differentiable at f(p) ∈ W .
Define h = g ◦ f . Then h is differentiable at p ∈ U and (Dh)p = (Dg)f(p) · (Df)p

Proof.

f(p+ v)− f(p) = (Df)p(v) + R(v)

g(f(p) + u)− g(f(p)) = (Dg)f(p)(u) + S(u)

g(f(p+ v)) = g(f(p) + (Df)p(v) + R(v))

= g(f(p)) + (Dg)f(p)((Df)p(v) + R(v)) + S((Df)p(v) + R(v))

Therefore,

g(f(p+ v))− g(f(p)) = (Dg)f(p)((Df)p(v) + R(v)) + S((Df)p(v) + R(v))

= (Dg)f(p)(Df)p(v) + (Dg)f(p)R(v) + S((Df)p(v) + R(v))

It now suffices to show that the last two terms are sublinear:

1. (Dg)f(p)R(v):

lim
v→0

∥∥(Dg)f(p)R(v)∥∥
‖v‖

≤ lim
v→0

∥∥(Dg)f(p)∥∥ · ‖R(v)‖‖v‖
= 0

as the first term is finite anr R is sublinear.

2. S((Df)p(v) + R(v)):

lim
v→0

‖S((Df)p(v) + R(v))‖
‖v‖

= lim
v→0

‖S((Df)p(v) + R(v))‖
‖(Df)p(v) + R(v)‖

· ‖(Df)p(v) + R(v)‖
‖v‖

The limit when v → 0 of the last term is finite:

‖(Df)p(v) + R(v)‖
‖v‖

≤ ‖(Df)p(v)‖
‖v‖

+
‖R(v)‖
‖v‖

≤ ‖(Df)p‖ ‖v‖
‖v‖

+
‖R(v)‖
‖v‖

= ‖(Df)p‖+
‖R(v)‖
‖v‖

141



12.3.2 Mean-Value Theorem

Theorem 12.3.2 (Mean Value Theorem). Let f : U → Rm, U ⊆ Rn. Assume f is differen-
tiable on U and the segment [p, q] is contained in U . Then:

|f(q)− f(p)| ≤M |q − p| , M = sup
x∈U
{‖(Df)x‖}

Proof. Assume the segment [p, q] is contained in U . The segment can be parameterized as:

p+ t(q − p), t ∈ [0.1]

Define:
g : [0, 1]→ R, g(t) := (f(p)− f(q))T · f(p+ t(q − p))

⇒ g′(t) = (f(p)− f(q))T (Df)p+t(q−p)(q − p)

By the Mean Value Theorem in R, there exists ζ ∈ (0, 1) such that:

g(1)− g(0) = g′(ζ) = (f(p)− f(q))T (Df)p+ζ(q−p)(q − p)

g(1)− g(0) = (f(p)− f(q))T · (f(q)− f(p)) = −‖f(p)− f(q)‖2

⇒ ‖f(p)− f(q)‖2 = (f(p)− f(q))T (Df)p+ζ(q−p)(p− q)

By the Cauchy-Schwarz Inequality:

‖f(p)− f(q)‖ ≤
∥∥(Df)p+ζ(q−p)∥∥ · ‖p− q‖ ≤M ‖p− q‖

Corollary 12.3.1. Assume U is connected. Let f : U → Rm, U ⊆ Rn be differentiable and
(Df)x = 0. Then f is constant.

Proof. Let x ∈ U . Define P (x) := {y ∈ U |f(x) = f(y)}. Lets show that P (x) is open:
Let y ∈ P (x). Since U is open, there exists an ϵ-neighborhood of y, Oy ⊆ U , which is open.
Let z ∈ Oy. The segment [y, z] ⊆ Oy. Then, |f(y)− f(z)| ≤ M |y − z| = 0. This implies
that f(x) = f(y) = f(z) for every z ∈ Oy. Then z ∈ P (x), which implies Oy ⊆ P (x), so
P (x) is open.

Now we show P (x) = U, ∀x ∈ U . Assume P (x) 6= U . That is, assume there exists x ∈
U, P (x) 6= U . P (x) and ∪y/∈P (x)P (y) are both open, disjoint and U = P (x) ∪

(
∪y/∈P (x)P (y)

)
.

This implies that U is disconnected, which is a contradiction. Therefore, P (x) = U .
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12.4 Partial Derivatives
Definition 12.4.1. Let f : U → Rm, U ⊆ Rn. Define the ij-th partial derivative of f at p
as:

∂fi(p)

∂xj
= lim

t→0

fi(p+ tej)− fi(p)
t

Theorem 12.4.1. Let f : U → Rm, U ⊆ Rn be differentiable. Then, the partial derivatives
exist and are the entries of the matrix that represents the total derivative.

Proof. Recall that the total derivative (Df)p is a linear map. This means that there exists
a matrix of size m × n that represents (Df)p. Let A be the matrix that represents the
derivative (Df)p. Then:

(Df)p(ej) = Aej = lim
t→0

f(p+ tej)− f(p)
t

=


∂f1(p)
∂xj...

∂fm(p)
∂xj


Then:

A =


∂f1(p)
∂x1

. . . ∂f1(p)
∂xn... ...

∂fm(p)
∂x1

. . . ∂fm(p)
∂xn



Note that Theorem 12.4.1 states that if the derivative exists, then the partials also exist.
A natural question is whether the converse is true. If the partial derivatives exist, is the
function f differentiable? The following example shows that this is not the case.

Example 9. Let:

f(x) =

0 if x, y = 0

xy
x2+y2

otherwise

f is not continuous at (x, y) = (0, 0). To see this, take:

(xn, yn) =

(
1

n
,
1

n

)
n→∞−−−→ (0, 0)

f(xn, yn) =
1

2
, ∀n ≥ 1

But f(0, 0) = 0, so f is not continuous. However, the partials exists. Note, however, that
the partials are not continuous.
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In the above example, we saw that the existence of the partials is not sufficient for
the function to be differentiable. In particular, the partial derivatives of the function in
the example existed, but were not continuous. The following theorem states a sufficient
condition for f to be differentiable.

Theorem 12.4.2. Let f : U → Rm, U ⊆ Rn. If the partial derivatives of f exist and are
continuous then f is differentiable.

Proof. Assume the partials exist and are continuous. Without loss of generality, assume
that m = 1 (Theorem 12.2.3). Let h ∈ Rn.

f(x+ h)− f(x) = f(x1 + h1, . . . , xn + hn)− f(x1, . . . , xn)

= f(x1 + h1, . . . , xn + hn)− f(x1, x2 + h2, . . . , xn + hn)

+ f(x1, x2 + h2, . . . , xn + hn)− f(x1, x2, x3 + h3 . . . , xn + hn)

+ f(x1, x2, x3 + h3, . . . , xn + hn)− f(x1, x2, x3, x4 + h4, . . . , xn + hn)

. . .

+ f(x1, x2, . . . , xn−1, xn + hn)− f(x1, x2, . . . , xn)

We are “moving” component by component on each line. Using the Mean Value Theorem:

=
∂f

∂x1
(θ1, x2 + h2, . . . , xn + hn)h1

+
∂f

∂x2
(x1, θ2, x3 + h3, . . . , xn + hn)h2

+ . . .

+
∂f

∂xn
(x1, . . . , xn−1, θn)hn

where θ1 ∈ (x1, x1 + h1), . . . , θn ∈ (xn, xn + hn). Then:

f(x+ h) − f(x)− A · h

=

(
∂f

∂x1
(θ1, x2 + h2, . . . , xn + hn)−

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x1, . . . , xn−1, θn)−

∂f

∂xn
(x)

)
· h

= z(h) · h
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By Cauchy-Schwarz Inequality:

‖f(x+ h)− f(x)− A · h‖
‖h‖

≤ ‖z(h)‖
‖h‖

‖h‖ = ‖z(h)‖ h→0−−→ 0

where the last inequality follows because the partials are continuous. Therefore, f is differ-
entiable.
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12.5 Exercises
1. (Euler’s Equations) Assume f : R2 → R is differentiable. Fix (x, y) ∈ R2. Define
g(t) = f(tx, ty) for all t > 0. Show g is differentiable and

g′(t) = x
∂f

∂x
(tx, ty) + y

∂f

∂y
(tx, ty).

Assume in addition, there exists α > 0 such that

f(tx, ty) = tαf(x, y) ∀t > 0 and ∀(x, y) ∈ R2. (12.8)

Show for all (x, y) ∈ R2,

x
∂f

∂x
(x, y) + y

∂f

∂y
(x, y) = αf(x, y). (12.9)

A function with the property (17.1) is said to be homogeneous of degree α. The
equation (17.2) is called Euler’s formula.

2. (Exercise 16 on page 347, Pugh) Let f : R2 → R3 and g : R3 → R be defined by
f = (x, y, z) and g = w where

w = w(x, y, z) = xy + yz + zx

x = x(s, t) = st y = y(s, t) = s cos t z = z(s, t) = s sin t

(a) Find the matrices that represent the linear transformations (Df)p and (Dg)q

where p = (s0, t0) = (0, 1) and q = f(p).

(b) Use the Chain rule to calculate the 1× 2 matrix [∂w/∂s, ∂w/∂t] that represents
(D(g ◦ f))p.

(c) Plug the functions x = x(s, t), y = y(s, t) and z = z(s, t) directly into w =

w(x, y, z) and recalculate [∂w/∂s, ∂w/∂t], verifying the answer given in (b).
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Chapter 13

Second-Order Differentiation in Rn

13.1 Bilinear Maps
Definition 13.1.1. Let g : Rn × Rn → Rm is a bilinear map if for all αi, βj ∈ R and
ui, vj ∈ Rn such that i ∈ {1, . . . , k} and j ∈ {1, . . . , k′}.

g

(
k′∑
j=1

βjvj,
k∑
i=1

αiui

)
=

k∑
i=1

k′∑
j=1

αiβjg(vj, ui)

for any positive integer k and k′.

Lemma 13.1.1 (Bilinear Matrix Representation). Let g : Rn×Rn → Rm be a bilinear map.
If m = 1, then the function g is uniquely represented by an n × n matrix H, such that
g(x, y) = xtHy where x, y ∈ Rn.

Proof. First we show that if g(x, y) = xtHy then g is a bilinear map. Suppose that x =∑k
i=1 αiui ∈ Rn and y =

∑k′

j=1 βjvj ∈ Rn. Then,

xtHy =

[
k∑
i=1

αiui

]t
H

[
k′∑
j=1

βjvj

]
Plugging-in Linear Combinations

=

[
k∑
i=1

αiu
t
i

]
H

[
k′∑
j=1

βjvj

]
Distributing Transpose

We can distribute the sum on either side of h and rearrange the equation to prove the desired
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result.

=
k∑
i=1

αiu
t
iH

[
k′∑
j=1

βjvj

]

=
k∑
i=1

k′∑
j=1

αiβju
t
iHvj

=
k∑
i=1

k′∑
j=1

αiβjg(ui, vj)

Second we show that every bilinear map can be represented with an n × n matrix H.
Define the entries hij = g(ei, ej), where ei, ej are elementary basis vectors (have 1 in a
single coordinate and zero otherwise). This is a similar argument to when we proved the
unique representation of a linear map in Lemma 1.3.2. Then we can write all vectors in the
Euclidean space as linear combinations of the elementary basis vectors. Let u, v ∈ Rn, then
u =

∑n
i=1 uiei and v =

∑n
j=1 ujej.
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13.2 Function Spaces
Definition 13.2.1. Suppose that g : Rn × Rn → Rm. We will denote this as g(v)(u) where
u, v ∈ Rn. Define g(v)(·) as a function that is constructed by fixing one of the inputs of g.

Lemma 13.2.1. Suppose that g : Rn × Rn is a bilinear map. Then g(v)(·) is a linear map.

Proof. Let α1, β1 ∈ R and u1, u2 ∈ R. Since g is a bilinear map we can distribute linear
combinations of its second argument.

g(v)(α1u1 + α2u2) = α1g(v)(u1) + α2g(v)(u2)

We define a metric between two linear maps f, g as

d(f, g) = ||f − g||

where ||T || := supx∈Rn:||x||=1 ||T (x)||. Using the operator norm inequality, this implies that
||f(v)− g(v)|| ≤ ||f − g|| ||v||. We can show that ||T || is a well-defined metric over the space
of linear maps.

1. ||f − g|| = ||g − f || (Symmetry).

2. ||f − g|| ≤ ||f − h||+ ||h− g|| (Triangle Inequality).

3. ||f − g|| ≥ 0 and ||f − g|| = 0 if and only if f = g.

Proof. We prove each iterm

1. Let f(x) = Ax, g(x) = Bx and h(x) = Cx. Then (i) ||f − g|| = ||g − f || because
||Ax− Bx|| = ||Bx− Ax|| for all x ∈ Rn.

2. (ii) Follows from the fact that ||Ax−Bx|| ≤ ||Ax−Cx||+||Cx−Bx|| (using the triangle
inequality for the Euclidean norm) for all ||x|| = 1. We can take the supremum on
both sides to show that ||f − g|| ≤ ||f − h||+ ||h− g||.

3. The norm is always non-negative by construction. Furthermore, if ||f − g|| = 0 that
means that ||(A − B)x|| = 0 for all x ∈ Rn such that ||x|| = 1. It can be shown
that this also holds for all non-zero x ∈ Rn by scaling the vector. Then that means
that Ker(A − B) = Rn. Therefore A − B = 0m×n and A = B. On the other hand if
f − g = 0m×n then ||f − g|| = 0.
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13.3 Second-Order Derivatives
Definition 13.3.1. Suppose that f : Rn → Rm is differentiable with total derivative (Df).
We say that f is twice differentiable if there exists a bilinear map T : Rn × Rn → Rm such
that:

(Df)x+v − (Df)x = T (v)(·) + R(v)(·), lim
v→0

‖R(v)(·)‖
‖v‖

= 0

We denote the derivative as (D2f)x := T and call it the second derivative of f . The norm
used in the numerator is the operator norm. The definition implies that R(v)(·) is linear on
its second argument (but not necessarily the first).

The definition of second-order differentiability implies that:

(Df)x+v(u)− (Df)x(u) = T (v)(u) + R(v)(u)

Each element in this equation is a vector in Rm. The equation is more easily interpreted if
we simplify some features of the problem. Let m = 1. Suppose that f is a function that
measures the profits of company and that u ∈ R2 is a proposed price change in two of its
products. The value (Df)x represents the effects of an average price change at current prices
x (call this the “bad times” prices).

However, the marginal effects of the price could differ depending on the current state
of prices. Suppose that we evaluate the marginal change at a different level x + v (“good
times”), which we denote (Df)x+v(u). The function T (v, u) is a bilinear approximation to
these simultaneous changes in prices (change in overall level and marginal changes). Conse-
quently the functions (Df)x+v and (Df)x represent the effect of all possible price changes
at each level.

Remark 1: In the example we described there appear to be an artificial distinction
between changes in overall price levels and marginal price changes. If the function is twice
differentiable there need not be. In the next section we show that the function T (v)(u) is
symmetric.

Remark 2: When f is a real-valued function, that is, when m = 1 the representation
is much simpler. By Lemma 13.1.1 there exists an n× n matrix that represents it. We call
this the Hessian matrix.
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13.4 Symmetry
Theorem 13.4.1. If (D2f)p exists, it is symmetric:

(D2f)p(v)(w) = (D2f)p(w)(v)

Proof. Without loss of generality, assume m = 1 (as symmetry concerns only the arguments
of f , not its values). Let f : Rn → R. Fix v, w ∈ Rn. Let t ∈ [0, 1] and define g : [0, 1]→ R,
where:

g(s) = f(p+ tv + stw)− f(p+ stw)

Using the Chain Rule,

g′(s) = Dfp+tv+stw(tw)−Dfp+stw(tw)

By the Mean Value Theorem, g(1)− g(0) = g′(θ), θ ∈ (0, 1), therefore

g(1)− g(0) = Dfp+tv+θtw(tw)−Dfp+θtw(tw) (13.1)

On the other hand, by definition of the second order derivative:

(Df)p+tv+θtw − (Df)p = (D2f)p(tv + θtw)(·) + R(tv + θtw)(·) (13.2)

(Df)p+θtw − (Df)p = (D2f)p(θtw)(·) + S(θtw)(·) (13.3)

Since (D2f)p is bilinear then it is linear in its first argument,

(D2f)p(tv + θtw)(·)− (D2f)p(θtw)(·) = (D2f)p(tv)(·)

We can subtract Equation 13.3 from 13.2 to obtain a new equation

(Df)p+tv+θtw − (Df)p+θtw = (D2f)p(tv)(·) + R(tv + θtw)(·)− S(θtw)(·)

We can plug the right hand side into Equation 13.1, evaluated at the vector (tw),

g(1)− g(0) = (D2f)p(tv)(tw) + R(tv + θtw)(tw)− S(θtw)(tw) (13.4)

151



We can divide both sides by t2,

g(1)− g(0)
t2

=
(D2f)p(tv)(tw)

t2
+
R(tv + θtw)(tw)

t2
− S(θtw)(tw)

t2

= (D2f)p(v)(w) +
R(tv + θtw)(tw)

t2
− S(θtw)(tw)

t2
Because (D2f)p bilinear.

= (D2f)p(v)(w) +
R(tv + θtw)(w)

t
− S(θtw)(w)

t
By Diff, R,S linear in second arg.

By definition of differentiability, R,S are sublinear in the first argument. Therefore we can
take limits on both sides to show that,

g(1)− g(0)
t2

= (D2f)p(v)(w)

To complete the proof we show that g(1)− g(0) is symmetric in the vectors v, w.

g(0) = f(p+ tv)− f(p)

g(1) = f(p+ tv + tw)− f(p+ tw)

Combining the two equations

g(1)− g(0) = f(p+ tv + tw)− f(p+ tv)− f(p+ tw) + f(p)

which is symmetric in v, w. Therefore (D2f)p(v, w) = limt→0(g(1)−g(0))/t2 is also symmetric
in the choice of v, w and therefore

(D2f)p(v)(w) = (D2f)p(w)(v)

Corollary 13.4.1. Let f : Rn → R. Suppose that f is twice differentiable. Then, there
exists a symmetric matrix representation (Hessian) for (D2f)x.

Proof. If m = 1, a matrix representation exists by Lemma Bilinear Matrix Representation.
By Theorem 13.4.1 the linear map is symmetric. Since the entries of the Hessian matrix are
hij = D2f(ei)(ej) and D2f(v)(w) = D2f(w)(v), then hji = D2f(ej)(ei) = D2f(ei)(ej) = hij.
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13.5 Taylor’s Expansion Theorem
In this section we present a special case of Taylor’s theorem for twice differentiable real-valued
functions.

Theorem 13.5.1. Let f : Rn → R be twice differentiable in an open set containing the
vectors x, y ∈ Rn, then

f(y) = f(x) + Jx(y − x) +
1

2
(y − x)tHx(y − x) + R(y, x)

where J is the Jacobian matrix associated with Dfx and H is the hessian associated with
(D2f)x, where R(·) satisfies limy→x

||R(y,x)||
||y−x||2 = 0. Alternatively this can also be expressed as

f(y) = f(x) + Jx(y − x) +
1

2
(y − x)tHx+θ(y−x)(y − x)

where θ ∈ (0, 1).

Proof. Let g(t) := f(x+ t(y− x)). Then by Taylor’s expansion theorem (Theorem 11.3.1),

g(t) = g(0) + g(1)(0)t+
1

2
g(2)(0)t2 +R∗(x, t(y − x))

where the vectors y, x are fixed. Using the chain rule, we can show that g(1)(t) = Dfx+t(y−x)(y−
x) and g(1)(0) = Dfx(y−x). The second term can be represented in matrix form as Jx(y−x),
where J is the Jacobian of the function. The residual is an unknown function of x and the
vector t(y − x) with the property that limt→0R

∗(x, t(y − x))/t2 = 0. On the other hand, by
the definition of a second order derivative,

Dfx+t(y−x) −Dfx = D2fx(t(y − x))(·) + S(t(y − x))(·)

where R is sublinear in its first argument. We can evaluate the linear maps on either side in
the direction (y − x),

Dfx+t(y−x)(y − x)−Dfx(y − x) = D2fx(t(y − x))(y − x) + S(t(y − x))(y − x)

We can substitute the left-hand side with g(1)(t)− g(1)(0) (using our previous result).

g(1)(t)− g(1)(0) = D2fx(t(y − x))(y − x) + S(t(y − x))(y − x)

We can divide both sides by t. The second derivative is bilinear, so D2fx(t(y − x))(y − x)/t
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is equal to D2fx(y − x)(y − x) (which does not depend on t).

g(1)(t)− g(1)(0)
t

= D2fx(y − x)(y − x) +
S(t(y − x))(y − x)

t

Taking limits on both sides we can show that

g(2)(0) = lim
t→0

g(1)(t)− g(1)(0)
t

= D2fx(y − x)(y − x)

The term involving the residual converges to zero because it is sublinear. The term D2fx(y−
x)(y−x) can be represented in terms of the Hessian as (y−x)tH(y−x). Finally notice that
g(0) = f(x) and g(1) = f(y). We can combine our results to show that

f(y) = f(x) + Jx(y − x) +
1

2
(y − x)tHx(y − x) + R(y, x)

where the residual is R(x, y) = R∗(x, y − x). We can multiply and divide by t2 to do the
following change of variable.

lim
y→x

||R∗(x, t(y − x))||
||y − x||2

= lim
y→x

||R∗(x, t(y − x))||
||t(y − x)||2

t2

= lim
v→0

||R∗(x, v)||
||v||2

t2 = 0

We can use similar techniques to show that g(2)(θ) = (y − x)tHx+θ(y−x)(y − x), applying
the third part of the univeriate Taylor theorem. Therefore, we can alternatively state the
theorem as

f(y) = f(x) + Jx(y − x) +
1

2
(y − x)tHx+θ(y−x)(y − x)

where θ ∈ (0, 1).
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13.6 Exercises
1. We showed that a matrix representation exists for a linear map. Why does it have to

be unique?

2. Let f : R2 → R2 be defined by

f

(
x1

x2

)
=
(
x31 + x32

)
.

Prove for any p ∈ R2, the matrix that represents (D2f)p is(
6p1 0

0 6p2

)
.

3. Let f : Rn → R be defined as
f(x) = xTATAx

where A is an n× n matrix. Calculate the matrices that represent (Df)x.

4. Assume that X is an n × k full rank matrix and that Y ∈ Rn. Show that β̂ =

(X tX)−1X tY is the solution to the least squares criterion function by computing the
first order conditions of

(Y −Xβ)t(Y −Xβ)
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Chapter 14

Comparative Statics

The main focus of this chapter is to present the implicit function theorem (IFT), which
is frequently used in economic theory for comparative statics. In a canonical comparative
statics setting there is a set of endogenous variables and a set of exogenous variables
or parameters. An individual agent makes an optimal choice, which is encoded in a set of
equations. We are interested in understanding how those choices depend on the underlying
parameters because it allows to answer questions about policy changes and how heterogeneity
of the parameters impacts the model.

In order to prove the main theorem we take an intermediate step to prove the contraction
mapping theorem (CMT), which can be used to characterize existences and uniqueness of
solutions in certain cases. The main parts of our proof of the (IFT) transform the problem so
that we can apply the contraction mapping theorem (CMT). The (CMT) is of independent
interest the foundation for finding solutions to life-cycle models in macroeconomics and
structural microeconomics. To make the theorem useful on its own we need additional
structure, e.g. optimization model + blackwell sufficiency conditions, which we do not cover
here. However, the proof is interesting and is an opportunity to practice some of the concepts
seen in the math camp so far.

In the chapter we cover two problems that arise in consumer theory and highlight how
the IFT is useful to derive answers to economic questions.
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14.1 Contraction Mapping Theorem

14.1.1 Preliminaries

Definition 14.1.1. Let M be a metric space. A sequence {xn} is Cauchy if for all ϵ > 0

there exists an integer N such that k, n ≥ N ,

d(xk, xn) ≤ ϵ

Definition 14.1.2. A metric space M is complete if each Cauchy sequence in M converges
to a limit in M .

By Theorem 24 in Pugh and Pugh (2002), the Euclidean space RM is a complete metric
space.
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14.1.2 Unique Fixed Points

Definition 14.1.3. Let M be a metric space. A contraction of M is a mapping f :M →M

such that for some constant ρ < 1 and all x, y ∈M we have

d(f(x), f(y)) ≤ ρ d(x, y)

Theorem 14.1.1 (Contraction Mapping Theorem). Suppose that f :M →M is a contrac-
tion and that the space is complete. Then f has a unique fixed-point p and for any x ∈ M ,
the iterate fn := f ◦ f ◦ · · · f(x) converges to p as n→∞.1

Proof. Choose any x0 ∈ M and define xn = fn(x0). We will break down the proof into
three parts.

(a) We show that for all n ∈ N,

d(xn, xn+1) ≤ ρnd(x0, x1) (14.1)

We can show this by induction. For n = 1, d(x1, x2) = d(f(x0), f(x1)) ≤ ρd(x0, x1)

because f is a contraction.

Suppose that the relationship holds for some n. Then d(xn+1, xn+2) = d(f(xn), f(xn+1)) ≤
ρd(xn, xn+1). By assumption of the induction step, d(xn+1, xn+2) ≤ ρn+1d(x0, x1).

(b) We show that the sequence {xn} is Cauchy. If N ≤ m ≤ n.

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + . . . d(xn−1, xn) Triangle Inequality (Recursive)
≤ ρmd(x0, x1) + ρm+1d(x0, x1) + . . .+ ρn−1d(x0, x1) By Equation 14.1
≤ ρm

(
1 + ρ+ ρ2 + . . . ρn−m−1

)
d(x0, x1) Factorizing d(x0, x1).

≤ ρm
∞∑
l=0

ρld(x0, x1) Finite series less than infinite sum

≤ ρm

1− ρ
d(x0, x1) Series converges because ρ < 1.

≤ ρN

1− ρ
d(x0, x1) Since ρ < 1 and N ≤ m by def.

Since ρ < 1 we can choose N large enough so that ρN

1−ρd(x0, x1) < ϵ for an arbitrary
ϵ > 0. Therefore {xn} is Cauchy.

1This is not a derivative, it is function iterated multiple times.
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(c) Show that the sequence converges. Since M is a complete metric space and the sequence
is Cauchy, xn → x∗.

(d) Show that if a function satisfies the contraction property, it is continuous at x∗. Fix
ϵ > 0, and choose δ = ϵ, then for all x, y, d(f(x∗), f(y)) ≤ ρd(x∗, y) < ϵ. Therefore, the
function is continuous.

(e) The vector x∗ is a fixed point because:

x∗ = lim
n→∞

xn = lim
n→∞

f(xn−1) = f( lim
n→∞

xn−1) = f(x∗)

(f) Show that the fixed point is unique. Suppose that x∗ = f(x∗) and y∗ = f(y∗). Suppose
that x∗ 6= y∗, then d(x∗, y∗) > 0. However, d(x∗, y∗) = d(f(x∗), f(y∗)) < ρd(x∗, y∗)

which is a contradiction. Therefore, x∗ = y∗.
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14.2 Implicit Function Theorem
Assumption 14.2.1 (Continuous Differentiability). Let f : U → Rm, U ⊆ Rn+m, be a
continuously differentiable mapping. Define

B(θ, y) :=


∂f1
∂y1

. . . ∂f1
∂ym... . . . ...

∂fm
∂y1

. . . ∂fm
∂ym

 A(θ, y) :=


∂f1
∂θ1

. . . ∂f1
∂θn... . . . ...

∂fm
∂θ1

. . . ∂fm
∂θn



Assumption 14.2.2 (Equilibrium Condition). Let z0 ∈ Rm. There exists a (θ0, y0) ∈ Rn+m

such that f(θ0, y0) = z0.

Assumption 14.2.3 (Full rank). Assume that B := B(θ0, y0) is full rank.

Theorem 14.2.1. Suppose that Assumptions Continuous Differentiability, Full rank and
Equilibrium Condition hold. Then there exist open sets V ⊆ Rn+m and Θ ⊆ Rn with the
property that (θ0, y0) ∈ V . Furthermore, for all θ ∈ Θ,

(a) There exists a unique y such that (θ, y) ∈ V and f(θ, y) = z0.

(b) Let y = g(θ) be an implicit function of θ. Then g : Θ→ Rm is continuously differentiable.
Furthermore,

(i) g(θ0) = y0.

(ii) f(θ, g(θ)) = z0 for all θ ∈ Θ.

(iii) (Dg)θ0 = −B−1A.
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14.3 Proof of Implicit Value Theorem
Proof. Without loss of generality assume that (θ0, y0) = (0, 0) and that z0 = 0. The Taylor
expression for f is

f(θ, y) = Aθ +By +R(θ, y)

where R is sublinear and continuously differentiable with respect to (θ, y) since the other
terms are continuously differentiable. Solving f(θ, y) = 0 for some θ, is equivalent to solving,

y = −B−1(Aθ +R(θ, y))

where we use the fact that B−1 is full rank. If R(θ, y) does not depend on y then the proof
is complete. Otherwise, the equation has y on both the left and right hand sides. We will
show that there exists a unique y by defining a contraction mapping. Fix an arbitrary θ and
treat A,B as constants, define the following function of y:

Kθ(y) := −B−1(Aθ +R(θ, y))

Then we can find the difference between two values of y as:

||Kθ(y1)−Kθ(y2)|| = ||B−1(R(θ, y1)−R(θ, y2))|| Substituting Definition
≤ ||B−1|| ||R(θ, y1)−R(θ, y2)|| Operator Norm Inequality

= ||B−1||
∣∣∣∣∣∣∂R(x, ỹ)

∂y

∣∣∣∣∣∣ ||y1 − y2|| Multivariate Mean Value Theorem

The scalar ||B−1|| is a finite constant because finite linear maps have finite operator norm.
The derivative of R is continuously differentiable around (0, 0) (recall that we centered (θ0, y0)

to be zero) and (DR)(0,0) = 0. Therefore we can bound the partial derivative term by
bounding the domain of (θ, y). Choose ||θ||, ||y|| ≤ r such that∣∣∣∣∣∣∂R(θ, ỹ)

∂y

∣∣∣∣∣∣ < 1

2||B−1||

That shows that Kθ(y) has the contraction property for ||x||, ||y|| ≤ r, because

||Kθ(y1)−Kθ(y2)|| ≤
1

2
||y1 − y2||

This is the key part of the proof because it allows us to apply the contraction mapping
theorem. We also need additional steps to cover other implications of the theorem. For
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example, we need to ensure that (θ0, y0) is contained in the set V . To ensure this notice that
Kθ(0) is the value that maps our original value of y (which we centered around zero) to some
other point. We need to make sure this is less than or equal to r (so that the contraction
maps it to the same set).

||Kθ(0)|| ≤ ||B−1|| ||θ||+ ||B−1|| ||R(θ, 0)||

Combining the triangle inequality and the operator norm. We can make the residual arbi-
trarily small, e.g. ||x|| ≤ τ , such that ||Kθ(0)|| ≤ r/2. Then define the set Θ as the ball with
radius τ around zero, and let M be a closed ball of radius r around zero in Rm.

By applying the contraction mapping theorem there exists a unique y for value of θ ∈ Θ.
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14.4 Application: Savings under Uncertainty
In this example we will consider a two period model where an investor is deciding how much
to save for the future. Her utility function is given by the function g and depends on the
amount she receives in each period. She has an initial wealth w and is planning to invest
an amount x in the asset. In the first periods she consumes an amount w − x. The amount
she consumes in the future depends on the state of the world, which is uncertain. There are
s ∈ {1, . . . S} possible states, each given a net income of θbs in addition to the amount she
saved in the first period.

Assumption 14.4.1 (Preferences). Let g : R→ R. g is C3, the function is strictly increasing
g′(x) > 0, ∀x ∈ R and has strictly negative second derivative g′′(x) < 0, ∀x ∈ R.

A strictly positive derivative ensures that the utility function is strictly increasing (more
is better). A negative second derivative captures risk aversion. The third derivative captures
absolute risk aversion, which we will explore in this chapter. The function g is her per-period
utility. Her expected utility is

f(x,w, θ) = g(w − x) +
S∑
s=1

πsg(x+ θbs)

Interpretation The sum represents the expected value over the different states, with prob-
abilities satisfying πs ∈ [0, 1],

∑S
s=1 πs = 1. We also assume that θ > 0. The payoffs are

bs ∈ R. We could also add a discount factor to the analysis with minimal changes.

Assumption 14.4.2 (Zero-Expected Income).
∑S

s=1 πsbs = 0.

This assumption ensures that the consumer saves some of her wealth for the next pe-
riod, to compensate for the fact that she does not receive any income in the next period (in
expectation). The following questions were from a previous quiz, and highlight interesting
techniques used to solve the exercises.

Problem We wish to analyze the properties of the solution x∗ using our differentiation
theorems. Our objective is to figure out the relationship between savings and initial wealth
and the variance of the asset (capture by θ).
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14.4.1 Convex Combinations

1. Show that
∑

s πsg
′(ys) > 0, ∀{ys} ∈ R and that

∑
s πsg

′′(ys) < 0, ∀{ys} ∈ R.

Solution. For each ys,

g′(ys) > 0, ∀s ∈ {1, ..., S} By assumption
πsg

′(ys) ≥ (>)0 The inequality is strict for at least one s∑
s

πsg
′(ys) > 0

The inequality is weak because πs ≥ 0. It has to be strict for at least one s because∑
s πs = 1. A similar logic follows for g′′(ys):

g′′(ys) < 0, ∀s ∈ {1, ..., S} By assumption
πsg

′′(ys) ≤ (<)0 The inequality is strict for at least one s∑
s

πsg
′′(ys) < 0
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14.4.2 FOC + Implicit Function Theorem

1. Define h(x,w, θ) := ∂f
∂x

. Compute h(x).

Solution. Notice that is a composite function of g(y) and y = w−x. Using the chain
rule we find that ∂g(w−x)

∂x
= ∂g(y)

∂y
|(w−x) ∂(w−x)∂x

= g′(w− x)(−1). Using the chain rule we
can also show that ∂g(x+θbs)

∂x
= ∂g(y)

∂y
|(x+θbs)

∂(x+θbs)
∂x

= g′(x+ θbs).

Finally we use the fact that a derivative of a linear combination of functions is just a
linear combination of the derivatives:

h(x,w, θ) =
∂f

∂x
=
∂g(w − x)

∂x
+
∑
s

πs
∂g(x+ θbs)

∂x

= −g′(w − x) +
∑
s

πsg
′(x+ θbs)

2. Compute ∂h
∂x
, ∂h
∂w
, ∂h
∂θ

.

Proof. Using the chain rule in a similar way as before, we can show that:

∂g′(w − x)
∂x

= −g′′(w − x)

∂g′(w − x)
∂w

= g′′(w − x)

∂g′(w − x)
∂θ

= 0

∂g′(x+ θbs)

∂x
= g′′(x+ θbs)

∂g′(x+ θbs)

∂w
= 0

∂g′(x+ θbs)

∂θ
= g′′(x+ θbs)bs
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Therefore we can compute each of the partial derivatives of h:

∂h

∂x
= g′′(w − x) +

∑
s

πsg
′′(x+ θbs) (Endogenous Variable)

∂h

∂w
= −g′′(w − x) (Parameter)

∂h

∂θ
=
∑
s

πsg
′′(x+ θbs)bs (Parameter)

Define the optimal x∗ as the one that satisfies the first order condition h(x∗, w, θ) = 0.
Assume that ∂h(x∗,w,θ)

∂x
6= 0.

3. Use the implicit function theorem to show that x∗(w, θ) is increasing with respect to
w.

Proof. The implicit function theorem says that: ∂x∗(w,θ)
∂w

= −∂h
∂x
|−1
(x∗,w,θ)

∂h
∂w
|(x∗,w,θ)

Because of the result in 1.(a), ∂h
∂x
|(x∗,w,θ) < 0 and ∂h

∂w
|(x∗,w,θ) > 0. Therefore ∂x∗(w,θ)

∂w
> 0.

This means that x∗(w, θ) is increasing in w.

Note: The implicit function theorem can be applied to each parameter separately. In
matrix form the implicit function theorem says the jacobian of x∗(w, θ) with respect
to (w, θ) is equal to −J−1

(x∗,w,θ),xJ(x∗,w,θ),(x,w), where J(x∗,w,θ),x is the jacobian w.r.t to
x and J(x∗,w,θ),(w,θ) with respect to (w, θ), which is equal to [J(x∗,w,θ),(w), J(x∗,w,θ),(θ)].
Therefore, there is no loss of generality in considering each parameter separately.

4. Compute an expression for ∂x∗(w,θ)
∂θ

.

Proof. By the implicit function theorem:
∂x∗(w,θ)

∂θ
= −∂h

∂x
|−1
(x∗,w,θ)

∂h
∂θ
|(x∗,w,θ)

∂x∗(w,θ)
∂θ

= −
∑

s πsg
′′(x+θbs)bs

g′′(w−x)+
∑

s πsg
′′(x+θbs)
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14.4.3 Absolute Risk Aversion

The coefficient of absolute risk aversion is defined as

A(x) = −g
′′(x)

g′(x)

We will assume that A(x) is decreasing ∀x ∈ R. We will show that this is related to
properties of the third-order derivative. The importance of the coefficient of absolute
risk aversion emerges in comparative statics exercises with savings, because when we
derive the first order conditions, we sometimes find terms involving the third derivative.

5. Rewrite the equation as: g′′(x) = −A(x)g′(x). Show that g′′′(x) >?0.

Proof. We can show that

g′′(x) = −A(x)g′(x)∀x ∈ R

=⇒ g′′′(x) = −A(x)g′′(x)− A′(x)g′(x)

Since g′(x) > 0 and A′(x) < 0 (since A is decreasing), then −A′(x)g′(x) > 0. The
value A(x) = −g′′(x)

g′(x)
is positive because g′′(x) is negative, g′(x) is positive. Therefore

−A(x)g′′(x) is positive. Putting the two things together:

g′′′(x) > 0

6. Show that
∑S

s=1 πsg
′′(x+ θbs)bs > 0 and use it to find the sign of ∂x∗(w,θ)

∂θ
. [Hint: show

that
∑S

s=1 πsg
′′(x)bs = 0 and construct a Taylor expansion between x and x + θbs for

each s].

Proof. Fixed typo: Originally the equation was stated in terms of v′′(y). Changed it
to g′′(y). This question also requires you to assume that θ > 0.

S∑
s=1

πsbs = 0 =⇒ g′′(x)
S∑
s=1

πs =
S∑
s=1

πsbsg
′′(x) = 0
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Therefore we can rewrite the following equation as:

S∑
s=1

πsg
′′(x+ θbs)bs =

S∑
s=1

πsg
′′(x+ θbs)bs −

S∑
s=1

πsg
′′(x)

=
S∑
s=1

πsbs[g
′′(x+ θbs)− g′′(x)]

We can do a first order taylor expansion between x and x+ θbs. Let ξs ∈ [x, x+ θbs]:

S∑
s=1

πsbs[g
′′(x+ θbs)− g′′(x)] =

S∑
s=1

πsbsg
′′′(ξs)θbs

=
S∑
s=1

πsg
′′′(ξs)θ(bs)

2 > 0

The last result follows by assuming that θ > 0 and the fact that g′′′(x) > 0∀x ∈ R.

Therefore ∂h(x∗,w,θ)
∂θ

> 0. Since ∂h(x∗,w,θ)
∂x

< 0, then by the implicit function theorem.
∂x∗(w,θ)

∂θ
> 0.
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14.5 Exercises
1. Consider the Auctions Example in previous chapters. Show that b∗(v) is increasing in
v. [Hint: Use the implicit function theorem].

2. Consider the following Keynesian IS-LM model. Suppose

Y = C(Y − T ) + I(r) +G

M = L(Y, r)

where Y is GDP, T is taxes, r is interest rate, G is government spending and M is
money supply. The functions C(·), I(·) and L(·, ·) are consumption function, invest-
ment function and money supply function respectively. Assume they are continuously
differentiable and

0 < C ′(x) < 1, I ′(r) < 0,
∂L

∂Y
> 0, and

∂L

∂r
< 0.

Suppose G, M and T are independent variables which can be controlled, Y and r are
dependent variables determined by G, M and T . Analyze the relationships between
{Y, r} and {G,M, T}.
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Chapter 15

Concavity (Convexity)

This section draws most of its results from Sundaram et al. (1996) Chapter 7. In the majority
of the cases the proofs are taken directly.

15.1 Set Definition
Definition 15.1.1. Let f : D → R, D ⊆ Rn convex. The subgraph of f and the epigraph
of f are defined as:

sub f = {(x, y) ∈ D × R | f(x) ≥ y} (15.1)

epi f = {(x, y) ∈ D × R | f(x) ≤ y} (15.2)

Figure 15.1: The figure depict the subgraph of a function defined over the interval [a, b]. The
shaded region is the subgraph and the epigraph is the blank region above the subgraph. Notice
that the subgraph and epigraph are defined with weak inequalities so they intersect at y = f(x).
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Definition 15.1.2. A real-valued function is said to be concave if sub f is a convex set.
It is said to be convex if epi f is a convex set.

Theorem 15.1.1. A function f : D → Rn defined on a convex set D ⊆ Rn, is a concave
function if and only if for all x, y ∈ D, λ ∈ (0, 1),

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

Similarly, the function is convex if for all x, y ∈ D, λ ∈ (0, 1)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Proof. We will only prove the relationship for concave functions. The proof for convex
functions is analogous.

=⇒ Suppose that the subgraph of f is a convex set. Let x1, x2 be arbitrary points in D.
Then (x1, f(x1)) and (x2, f(x2)) are contained in sub f . Since the set is convex, if λ ∈ (0, 1)

then xλ := λ(x1, f(x1)) + (1− λ)(x2, f(x2)) is contained in sub f . This can be rewritten as
(λx1 + (1 − λ)x2, λf(x1) + (1 − λ)f(x2)). By definition, a point (w, z) is contained in the
subgraph if f(w) ≥ z, therefore,

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2))

⇐= Now suppose that we choose arbitrary points (x1, y1), (x2, y2) ∈ sub f , i.e. x1, x2 ∈
D and f(x1) ≥ y1 and f(x2) ≥ y2. We want to show that for λ ∈ (0, 1), (xλ, yλ) :=

λ(x1, y1) + (1− λ)(x2, y2) ∈ sub f . Notice

f(xλ) = f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2) ≥ λy1 + (1− λ)y2 = yλ

Because f(xλ) ≥ yλ, we have shown that the subgraph is convex.
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15.1.1 Strict Concavity (Convexity)

Definition 15.1.3. A real-valued function f defined over a convex set D ⊆ Rn is said to be
strictly concave if for all x, y ∈ D such that x 6= y and for all λ ∈ (0, 1),

f(λx+ (1− λ)y) > λf(x) + (1− λ)f(y)

Strictly convex functions are defined analogously by exchanging the inequality.

Lemma 15.1.1. A function f : D → R is concave on D if and only if the function −f is
convex on D. It is strictly concave if and only if −f is strictly convex.

Proof. Let x1, x2 ∈ D and λ ∈ (0, 1) then

f(λx1+(1−λ)x2) ≥ λf(x1)+(1−λ)f(x2) ⇐⇒ −f(λx1+(1−λ)x2) ≤ λ(−1)f(x1)(1−λ)(−1)f(x2)

This lemma helps us establish that we can prove the majority of theorems for concave
function, without loss of generality.

15.1.2 Conic Combinations of Concave Functions

Lemma 15.1.2. Let F be a collection of real-valued concave functions defined on a convex
set D ⊆ Rn. Then for all positive integers K, vectors of weights θ ∈ RK

+ and functions
fk ∈ F , then f :=

∑K
k=1 θkfk is also concave.

Proof. Let x1, x2 ∈ D and let λ ∈ (0, 1). Since each function is concave

fk(λx1 + (1− λ)x2) ≥ λfk(x1) + (1− λ)fk(x2) ∀k ∈ {1, . . . , K}

Multiplying each term by a non-negative quantity preserves the inequality. We can then
sum the terms over k ∈ {1, . . . , K}.

K∑
k=1

θkfk(λx1 + (1− λ)x2) ≥ λ

K∑
k=1

θkfk(x1) + (1− λ)
K∑
k=1

θkfk(x2) ∀k ∈ {1, . . . , K}

which implies that f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2).
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15.2 Derivative Characterization

15.2.1 First Derivative

Theorem 15.2.1. Let D be an open and convex set in Rn, and let f : D → R be differentiable
on D. Then f is concave on D if and only if

Df(x)(y − x) ≥ f(y)− f(x), ∀x, y ∈ D

Proof. =⇒ Suppose that f is concave. Let x, y ∈ D, then for all t ∈ (0, 1), f(ty+(1−t)x) ≥
tf(y) + (1− t)f(x). We can subtract f(x) on either side and divide by t,

f(ty + (1− t)x)− f(x)
t

≥ tf(y) + (1− t)f(x)− f(x)
t

= f(y)− f(x), t ∈ (0, 1)

The second equality follows because some of the terms cancel out. Furthermore, we can
rewrite ty + (1− t)x as x+ t(y − x). Then we can take the limit from above.

lim
t↓0

f(x+ t(y − x))− f(x)
t

≥ f(y)− f(x)

Define g(t) := f(x + t(y − x)) and let g′(t) = limt→0
g(t)−g(0)

t
. Using the chain rule we can

show that g′(t) = Dfx(y − x). Since the limit exists then it must be equal to limt↓0
g(t)−g(0)

t

because of Theorem Equivalent Limit Definitions. therefore,

Dfx(y − x) ≥ f(y)− f(x)

⇐= Now suppose that for all x1, x2 ∈ D we have

Dfx1(x2 − x1) ≥ f(x2)− f(x1)

Pick any x, y ∈ D and λ ∈ (0, 1). We will show that we must have f(λx + (1 − λ)y) ≥
λf(x)+(1−λ)f(y), which will establish that f is concave on D. For expositional convenience,
define the convex combination

z := λx+ (1− λ)y

By assumption we also have,

Df(z)(x− z) ≥ f(x)− f(z) (15.3)

Df(z)(y − z) ≥ f(y)− f(z) (15.4)
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Notice that λ(x − z) + (1 − λ)(y − z) = 0. Multiplying Equation 15.3 by λ/(1 − λ) and
adding the two equations, we obtain

λ

1− λ
f(x) + f(y)− 1

1− λ
f(z) ≤ 0

Then multiplying the equation by (1− λ) and rearranging,

λf(x) + (1− λ)f(y) ≤ f(z) = f(λx+ (1− λ)y)
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15.2.2 Second Derivative

Definition 15.2.1. Let f : Rn → R be a twice differentiable, real-valued function. The
second derivative D2fx evaluated at a point x ∈ Rn is negative definite if for all v ∈ Rn

such that v 6= 0, D2fx(v)(v) < 0. If the inequality is weak for at least one v, then D2fx is
negative semi-definite.

For real-valued functions, it can be shown that negative (semi) definiteness of the second
derivative is equivalent to saying that its associated hessian matrix is negative (semi) definite.
Notice that symmetry is already guaranteed by Theorem 13.4.1 so we do not need to verify
it as part of the definition of negative (semi) definiteness.

Theorem 15.2.2. Let f : D → R be a twice differentiable function, where D ⊆ Rn is open
and convex. Then

1. f concave if and only if D2fx is a negative semi-definite matrix for all x ∈ D.

2. D2fx is negative definite for all x ∈ D, then f is strictly concave.

An analogous result holds for (strictly) convex functions and the Hessian being (positive
definite) positive semi-definite.

Proof. We break down the proof into two parts.
⇐= Let x1, x2 ∈ RR and λ ∈ (0, 1). For notational simplicity define h := x1 − x2 and

xλ := λx1 + (1− λ)x2. We will do two separate taylor expansions of f around xλ.

f(x1) = f(xλ) + (Df)xλ((1− λ)h) +
1

2
(D2f)θ((1− λ)h)((1− λ)h)

f(x2) = f(xλ)− (Df)xλ(λh) +
1

2
(D2f)ψ(λh)(λh)

where θ is contained in the line segment between x1 and xλ and ψ is contained in the line
segment between xλ and x2. Multiply the first equation by λ, the second equation by (1−λ).
We can use linearity of (Df)xλ to simplify each equation.

λf(x1) = λf(xλ) + (Df)xλ(λ(1− λ)h) +
1

2
(D2f)θ((1− λ)h)((1− λ)h)

(1− λ)f(x2) = (1− λ)f(xλ)− (Df)xλ((1− λ)λh) +
1

2
(D2f)ψ(λh)(λh)

We can add the two equations together

λf(x1) + (1− λ)f(x2) = f(xλ) +
1

2
λ(D2f)θ((1− λ)h)((1− λ)h) +

1

2
(1− λ)(D2f)ψ(λh)(λh)
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If D2f is negative semi-definite then the two terms in the equation are weakly negative then
we can prove concavity

λf(x1) + (1− λ)f(x2) ≤ f(xλ)

Similarly if D2f is negative definite, then we get strict concavity,

λf(x1) + (1− λ)f(x2) < f(xλ)

=⇒ Let x ∈ D. Choose an arbitrary non-zero ϵ ∈ Rn. Define x2 = x+ tϵ, x1 = x− tϵ for
a scalar t > 0. Since the set D is open, there exists a small enough t such that x1, x2 ∈ Rn.
Carry out the following Taylor expansions using the form that includes the residual as a
separate term.

f(x+ tϵ) = f(x) + (Df)xλ(tϵ) +
1

2
(D2f)x(tϵ)(tϵ) +

R(x, x+ tϵ)

t2

f(x− tϵ) = f(x)− (Df)xλ(tϵ) +
1

2
(D2f)x(tϵ)(tϵ) +

S(x, x− tϵ)
t2

We can add the terms together and divide by 1/2,

1

2
f(x+ tϵ) +

1

2
f(x− tϵ) = f(x) + (D2f)x(tϵ)(tϵ) + R(tϵ)(tϵ) + S(−tϵ)(tϵ)

Rearranging the equation and dividing by t. We simplify the equation by using bilinearity
of (D2f)x,

1
2
f(x+ tϵ) + 1

2
f(x− tϵ)− f(x)
t2

= (D2f)x(ϵ)(ϵ) +
R(x, x+ tϵ)

t2
+
S(x, x− tϵ)

t2

We can take the limit of the residuals, consider the first residual,

lim
t→0

R(x, x+ tϵ)

t2
||ϵ||
||ϵ||

= lim
t→0

R(x, x+ tϵ)

||tϵ||2
||ϵ||2 = lim

tϵ→0

R(x, x+ tϵ)

||tϵ||2
= 0

We can apply a similar strategy with S(x, x− tϵ). The left-hand side is non-positive by the
definition of concavity since x = 1

2
(x + tϵ) + 1

2
(x− tϵ). We can take limits on both sides to

show that
lim
t→0

1
2
f(x+ tϵ) + 1

2
f(x− tϵ)− f(x)
t2

= D2fx(ϵ)(ϵ)

Therefore, we it follows that D2fx(ϵ)(ϵ) ≤ 0, for any arbitrary non-zero ϵ ∈ Rn. Therefore,
D2
x is negative-semi definite.
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15.3 Special Topological Properties
Theorem 15.3.1. Let f : D → R be a concave function define on a convex set D ⊆ Rn.
Then f is continuous in the interior of D.

Proof. Let x ∈ int(D) then there exists an open ball B(x, ϵ) ⊆ D for some ϵ > 0 such that
f(B(x, ϵ)) (prove as an exercise). Choose an ϵ∗ ∈ (0, ϵ) and define A as the set of vectors
z ∈ R such that ||z − x|| = ϵ∗. By construction, A ⊆ B(x, ϵ) ⊆ D.

WLOG choose an arbitrary sequence xk ∈ B(x, ϵ∗) such that xk → x. For all k there
exists zk ∈ A such that xk = θkx+ (1− θ)zk for some θ ∈ (0, 1). The vector zk − x is in the
same direction as xk−x but is constrained to have a particular length that does not depend
on k. This guarantees that as k →∞, θk → 1. Therefore, by concavity of f ,

f(xk) = f(θkx+ (1− θk)zk) ≥ θkf(x) + (1− θk)f(zk)

Taking limits on both sides and since θk → 1 (because xk converges to x and zk−x has fixed
length).

lim inf
k→∞

f(xk) ≥ f(x) + lim inf
k→∞

(1− θk)zk = f(x)

Similarly, we can find a vector wk ∈ A and λk ∈ (0, 1) such that x = λkxk + (1− λk)wk. We
can once again exploit concavity of f , to show that:

f(x) = f(λkxk + (1− λk)wk) ≥ λkf(xk) + (1− λk)f(wk)

Since λk → 1 as k →∞, by taking limits we obtain,

f(x) ≥ lim sup
k→∞

f(xk)

Since f(x) ≤ lim infk→∞ f(xk) ≤ lim supk→∞ f(xk) ≤ f(x), then f(x) = limk→∞ f(xk) for
any arbitrary sequence {xk}. Therefore, f must be continuous.
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Chapter 16

Quasiconcavity

16.1 Set Definition
The proofs in this section come from Sundaram et al. (1996), Chapter 8.

Definition 16.1.1. Let f : D → R, D ⊆ Rn convex. The upper contour set of f and the
lower contour set of f at a ∈ R, are

Uf (a) = {x ∈ D | f(x) ≥ a} (16.1)

Lf (a) = {x ∈ D | f(x) ≤ a} (16.2)

Definition 16.1.2. A real-valued function is said to be quasiconcave if for all a ∈ R, Uf (a)
is a convex set. It is said to be quasiconvex if for all a ∈ R, Lf (a) is a convex set.

Theorem 16.1.1. A function f : D → R defined on a convex set D ⊆ Rn, is a quasiconcave
function if and only if for all x, y ∈ D, λ ∈ (0, 1),

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}

Similarly, the function is quasiconvex if for all x, y ∈ D, λ ∈ (0, 1)

f(λx+ (1− λ)y) ≤ max f(x), f(y)

Proof. We will only show the proof for quasiconcavity, the proof for quasiconvexity is anal-
ogous.

=⇒ Suppose that f is quasiconcave, i.e. that Uf (a) is a convex set for each a ∈ R.
Let x, y ∈ D and λ ∈ (0, 1). Assume without loss of generality, that f(x) ≥ f(y). Letting
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a = f(y), we have x, y ∈ Uf (a). By the convexity of Uf (a), we have λx+ (1− λ)y ∈ Uf (a),
which means

f(λx+ (1− λ)y) ≥ a = f(y) = min{f(x), f(y)}

⇐= Now suppose we have f(λx + (1 − λ)y) ≥ min{f(x), f(y)} for all x, y ∈ D and for
all λ ∈ (0, 1). Let a ∈ R. If Uf (a) is empty or contains only one point point, it is convex,
so suppose that it contains at least two points x and y. Then f(x) ≥ a and f(y) ≥ a, so
min{f(x), f(y)} ≥ a. Now, for any λ ∈ (0, 1), we have f(λx + (1− λ)y) ≥ min{f(x), f(y)}
by hypothesis and so λx+(1−λ)y ∈ Uf (a). Since a ∈ R was arbitrary, the proof is complete.

16.1.1 Strict Quasi Concavity (Quasi Convexity)

Definition 16.1.3. A real-valued function f defined over a convex set D ⊆ Rn is said to be
strictly quasiconcave if for all x, y ∈ D such that x 6= y and for all λ ∈ (0, 1),

f(λx+ (1− λ)y) > min{f(x), f(y)}

Strictly quasiconvex functions satisfy,

f(λx+ (1− λ)y) < max{f(x), f(y)}

Lemma 16.1.1. The function f : D → R is quasiconcave on D if and only if −f is
quasiconvex on D. It is strictly quasiconcave on D if and only if −f is strictly quasiconvex
on D.

Proof. Let x1, x2 ∈ D and λ ∈ (0, 1) then

f(λx1+(1−λ)x2) ≥ min{f(x1), f(x2)} ⇐⇒ −f(λx1+(1−λ)x2) ≤ max{−f(x1),−f(x2)}

Multiplying the min operator by a negative number switches to a max whose inner arguments
are multiplied by the negative number. A similar proof applies to strict concavity, using a
strict inequality instead of a weak inequality.
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16.2 Derivative Characterization
Theorem 16.2.1. Let f : D → R be a continuously differentiable function where D ⊆ Rn is
convex and open. Then f is a quasiconcave function on D if and only if it is the case that
for any x, y ∈ D,

f(y) ≥ f(x) =⇒ Dfx(y − x) ≥ 0

Proof. =⇒ First suppose that f is quasiconcave on D and let x, y ∈ D such that f(y) ≥
f(x). Let t ∈ (0, 1). Since f is quasiconcave, we have

f(x+ t(y − x)) = f((1− t)x+ ty) ≥ min{f(x), f(y)} = f(x).

Therefore, it is the case that for all t ∈ (0, 1), we have

f(x+ t(y − x))− f(x)
t

≥ 0

As t ↓ 0 the left hand side converges to Dfx(y − x), so Dfx(y − x) ≥ 0.
⇐= Now suppose that for all x, y ∈ D such that f(y) ≥ f(x), we have Dfx(y− x) ≥ 0.

Pick any x, y ∈ D, and suppose without loss of generality that f(x) = min{f(x), f(y)}. We
will show that for any t ∈ [0, 1], we must also have f((1 − t)x + ty) ≥ min{f(x), f(y)},
establishing the quasiconcavity of f . Let z(t) = (1− t)x+ ty.

Define g(t) = f(x+ t(y− x)). Note that g(0) = f(x) ≤ f(y) = g(1); and that g is C1 on
[0, 1] with g′(t) = Df [x+ t(y − x)](y − x). We will show that if t∗ ∈ (0, 1) is any point such
that f(z(t∗)) ≤ f(x) we must have g′(t∗) = 0.

Suppose that t∗ ∈ (0, 1) we have f(x) ≥ f(z(t∗)). Then by hypothesis, we must also
have Dfz(t∗)(x − z(t∗)) = −t∗Dfz(t∗)(y − x) ≥ 0. Since t∗ > 0, this implies that g′(t∗) ≤ 0.
On the other hand it is also true that f(y) ≥ f(x) ≥ f(z(t∗)), so we must also have
Df(z(t∗))(y − z(t∗)) = (1 − t∗)Dfz(t∗)[y − x] ≥ 0. Since t∗ < 1, this implies in turn that
g′(t∗) ≥ 0. It follows that g′(t∗) = 0.
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16.3 Conic Combinations Not Quasiconcave
In this section we present a counter-example showing than conic combinations of quasi-
concave functions are not, in general, quasiconcave. This stands in contrast with concave
functions, that were preserved under conic combinations. This finding has implications for
decision theory, where expectations can be expresses as finite (or infinite) conic combinations.

Example 10. Consider the following quasiconcave functions defined over R,

f(x) = x3 g(x) = 1− x2

Then the addition of the functions is not quasiconcave:

h(x) = x3 + 1− x2

Figure 16.1: The figure depict the function h(x).
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16.4 Concavity and Quasi-Concavity
Theorem 16.4.1. Let f : D → R, D ⊆ Rn. If f is concave on D, it is also quasiconcave.
If f is convex on D, it is also quasiconvex on D.

Proof. Suppose f is concave. Then for all x, y ∈ D and λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

≥ λmin{f(x), f(y)}+ (1− λ)min{f(x), f(y)}

≥ min{f(x), f(y)}

Theorem 16.4.2. If f : D → R is quasiconcave on D, and ϕ : R → R is a monotone
non-decreasing function, then the composition ϕ � f is a quasiconcave function from D to
R. In particular, any monotone transform of a concave function results in a quasiconcave
function.

Proof. Pick any x, y ∈ D, and any λ ∈ (0, 1). Since f is quasiconcave by hypothesis, we
have

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}

Since ϕ is non-decreasing, this implies that

ϕ(f(λx+ (1− λ)(y)) ≥ ϕ(min{f(x), f(y)}) = min{ϕ(f(x)), ϕ(f(y))}
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Part III

Answer Key
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Chapter 17

Suggested Solutions

17.1 Overview of Linear Algebra
1. Suppose that T (x) = Ax and that F (y) = By, with Am×n and Bk×m.

(a) Show that G = F (T (x)) is also a linear map.

Solution. G = F (T (x)) = F (Ax) = B(Ax) = BAx = Cx, where C is a k × n
matrix. Using Lemma 1.3.1 because G can be expressed as the multiplication of a
constant matrix times a vector, it is a linear map.

(b) Show that ||G|| ≤ ||F || ||T ||. Is the composite of two linear maps continuous?

Solution. Let x ∈ Rn. Using the operator norm inequality twice.

||F (T (x))|| ≤ ||F || ||T (x)||

≤ ||F || ||T || ||x||

Restrict attention to vectors of unit length such that ||x̃|| = 1, then ||G(x̃)|| ≤
||F || ||T ||. Then right hand side does not depend on the input vector. Therefore
we can take the supremum on the left-hand side to show that ||G|| ≤ ||F || ||T ||. To
prove continuity it suffices to use the fact that G is a linear map by using Theorem
1.5.1.

(c) Assume that P is a square matrix. Use part (b) to show that for any non-negative
integer t, ||P t|| ≤ ||P ||t.
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Solution. If t = 1 then ||P t|| = ||P ||. Suppose that the statement holds for
some t ≥ 1, then using the previous lemma ||P t+1|| = ||P tP || ≤ ||P t|| ||P ||, where
||P t|| ≤ ||P ||t by the induction hypothesis. Therefore, ||P t+1|| ≤ ||P ||t+1. By the
principle of induction, the result is proved.

(d) Show that if x is a probability vector, then ||x|| ≥ a for some a > 0.

Solution. First, we show that ||x|| > 0. We proceed using proof by contradiction.
Since ||x|| ≥ 0, assume (by contradiction) that ||x|| = 0 then x = 0n, meaning all
its entries are zero. However, the entries of a probability vector must add up to
one. Thus we must have ||x|| > 0. But this is not sufficient for the statement of
interest–we want to show ||x|| is bounded below by a positive constant.
Let P denote the space of probability vectors. Now we show it is compact. Consider
a sequence of probability vectors xk = (x1k, . . . , xnk) with

∑
i xik = 1, xk ≥ 0 for all

k, and xk → x as k → ∞. Since limits preserve equalities and weak inequalities,
it follows that

∑
i xi = 1 and xi ≥ 0, therefore the limit is still a probability

vector and hence the set P is closed. It is also bounded because all its entries are
non-negative and less that or equal to one. Therefore, it is compact.
The function f(x) =

√
xtx is continuous because it is a polynomial of the entries

of the vector. The extreme-value theorem states that if a function is continuous
and the space is compact then it has a maximum and a minimum. Therefore, a
minimum exists, and denote infx∈P

√
xtx =

√
xt∗x∗ for some x∗ ∈ P . By our

previous result ||x∗|| > 0 and therefore ||x|| is bounded away from zero.
In fact, 1/

√
n ≤ ||x|| ≤ 1, where n is the dimension of ||x||. The shortest proba-

bility vector has the value 1/n as each component of the vector, while the longest
probability vector has the value 1 in a single component and 0 in all others. This
constitutes an easier proof for the statement:

||x|| =
√
x21 + x22 + ...+ x2n =

√
n

√
x21 + x22 + ...+ x2n

n

≥
√
n
x1 + x2 + ...+ xn

n
= 1/

√
n,

where the inequality is due to the AM–GM inequality (the inequality of arithmetic
and geometric means) and every element of a probability vector is non-negative
with a sum of 1.
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(e) If P is a stochastic matrix, could it be ||P || < 1? What would this imply for our
migration example if it were true?

Solution. Let P denote the space of probability vectors. Then if X ∈ P then
Px ∈ P . By applying this argument recursively we know that P tx ∈ P . Fur-
thermore, using part (d), ||P tx|| ≥ ||x∗|| ≥ a where a is a positive constant.
Furthermore, ||x|| ≤ 1 because all the entries add-up to one and are non-negative.
Using the operator norm inequality if ||P || < 1 then ||P tx|| ≤ ||P ||t ||x|| → 0.
However, this contradicts the fact that ||P tx|| ≥ a > 0 for all integer t and
probability vector ||x|| ∈ P . Therefore, it cannot be that ||P || < 1. In our
migration example, an implication of ||P || < 1 would be that some people go to
other states apart from 1 and 2, i.e., the size of population in city 1 and 2 is
shrinking (which is why the norm converges to zero). However, the population is
not shrinking, but just changing location.

2. In this section you will expand some of the details of the proof of the Cauchy-Schwarz
inequality. Let λ ∈ R,v,x ∈ Rn. We know that if z = v − λx, ||z|| ≥ 0, then

vtv − 2λvtx+ λ2xtx ≥ 0

(a) Show that the condition in Equation 1.2 is equivalent to:

inf
λ∈Rn
{ vtv − 2λvtx+ λ2xtx } ≥ 0, ∀v,x ∈ Rn

Solution. ( =⇒ ) Taking the infimum to the left hand side of Equation 1.2 implies
the infimum inequality.
( ⇐= ) Suppose (by contradiction) that there exists a λ ∈ R such that vtv −
2λvtx + λ2xtx < 0 for some λ. Then that means that this λ produces a value
strictly lower than the infimum, a contradiction.

(b) Consider the case when ||x|| > 0. Use the fact that the function is quadratic in λ

to show that a minimum exists and that is

vtx

xtx
= argmin

λ∈Rn

{ vtv − 2λvtx+ λ2xtx }

Solution. The first order condition with respect to λ yields −2vtx + 2xtxλ = 0

which yields the solution. The second-order condition is xtx > 0 hence it is indeed
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a minimum.

(c) Show that if v = x, then Cauchy-Schwarz attains equality.

Solution. If v = x then ||vtx|| = |vtv| = ||v||2 = ||v|| ||x||.
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17.2 Image and Kernel
1. Suppose that X is a non-zero m× n rank deficient matrix. Suppose that we partition

its columns X = [X1, X2] in such a way that Im(X1) = Im(X) and X1 is full rank.
The block matrices have n1, n2 columns, respectively. This is equivalent to dropping
redundant variables in a linear regression.

(a) Show that Equation 2.1 can be written in block-partitioned form as:[
X t

1X1 X t
1X2

X t
2X1 X t

2X2

]
β =

[
X t

1Y

X t
2Y

]

Solution. The transpose of X in block-partition form is
[
X t

1

X t
2

]
. That means that

X tX =

[
X t

1

X t
2

] [
X1 X2

]
=

[
X t

1X1 X t
1X2

X t
2X1 X t

2X2

]

Similarly we can show that

X tY =

[
X t

1

X t
2

]
Y =

[
X t

1Y

X t
2Y

]

(b) Suppose that β̂1 = (X t
1X1)

−1(X t
1Y ). Construct a vector β∗ =

[
β̂1

0n2×1

]
. Show

that β∗ is a solution to Equation 2.1 if and only if X t
2X1β̂1 = X t

2Y .

Solution. Write the system of equations in block partition form:[
X t

1X1 X t
1X2

X t
2X1 X t

2X2

][
β̂1

0n2×1

]
=

[
X t

1Y

X t
2Y

]

We can expand the terms in each block.[
X t

1X1β̂1 +X t
1X20n2×1

X t
2X1β̂1 +X t

2X20n2×1

]
=

[
X t

1X1β̂1

X t
2X1β̂1

]
=

[
X t

1Y

X t
2Y

]

By construction (X t
1X1)β̂1 = (X t

1Y ). Therefore the only condition we need to
verify is X t

2X1β̂1 = X t
2Y .
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(c) Verify that the columns of X2 belong in Im(X1). Use this fact to show that
X t

2X1β̂1 = X t
2Y .

Solution. The columns in X2 belong in Im(X) which is equal to Im(X1) by
assumption. Let x2l denote the lth column of X2 which is contained in Im(X1).
Then for l ∈ {1, . . . , k2} there exists a vector cl such that x2l = X1cl. We can stack
this result in matrix form as X2 = X1C. That means that X t

2X1β̂1 = CtX t
1X1β̂1.

On the other hand, substituting the definition of the estimator,

X t
2X1β̂1 = CtX t

1X1(X
t
1X1)

−1X t
1Y.

Some terms cancel out and the expression simplifies to CtX t
1Y = (X1C)

tY =

X t
2Y . This completes the proof.

(d) Consider the data matrix,

X =


1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

 , Y =


1

2

3

4

5


Construct X tX and X tY . Now partition the matrix into X1, X2 and compute
β∗. Verify that the results that you proved above are true for the following cases:

(i) Construct X1 using columns 1 and 2.

Solution.

X1 =


1 1

1 1

1 0

1 0

1 0

 X2 =


0

0

1

1

1

 , X = [X1, X2] X tX =

5 2 3

2 2 0

3 0 3

 , X tY =

153
12



X t
1X1 =

[
5 2

2 2

]
, X t

1Y =

[
15

3

]
β∗ =

 4

−2.5
0

 X tXβ∗ =

153
2
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(ii) Construct X1 using columns 1 and 3.

Solution.

X1 =


1 0

1 0

1 1

1 1

1 1

 X2 =


1

1

0

0

0

 , X = [X1, X2] X tX =

5 3 2

3 3 0

2 0 2

 , X tY =

1512
3



X t
1X1 =

[
5 3

3 3

]
, X t

1Y =

[
15

2

]
β∗ =

1.52.5

0

 X tXβ∗ =

153
2



Notice that we follow the convention to write a partition such that X =

[X1, X2]. In this case we select columns 1 and 3, so the matrices X1, X2 are
different than before in (i).

(e) Is β∗ the same in both exercises? How can we interpret the result?

Proof. Typically β∗ does not produce the same result. This is an example where
there are two mutually exclusive categorical variables and an intercept. For ex-
ample, column 1 of X presents a constant term, column 2 could represent a binary
indicator for whether the individual is female and column 3 could represent a bi-
nary indicator for male. The interpretation of the coefficient changes. If we drop
the last column, the “reference category” is male. If we drop the second column,
the “reference category” is female. However, both models have the same ability
to describe the data without loss of information, because their columns have the
same image.

You can use the fact that the inverse of a 2× 2 matrix is given by:

A =

[
a11 a12

a21 a22

]
=⇒ A−1 =

1

a11a22 − a12a21

[
a22 −a12
−a21 a11

]
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17.3 Orthogonality
1. In this exercise you will prove a version of the Frisch-Waugh-Lovell Theorem (Greene,

2012) in the detrending example.

(a) Prove that β̃1 = (X t
1M2X1)

−1(X t
1M2Y ).

Solution. β̃1 = (Û t
1Û1)

−1(Û t
1ÛY ). Where Û1 = M2X1 and ÛY = M2Y . Thus we

can rewrite the estimator as

β̃1 = ((M2X1)
tM2X1)

−1((M2X1)
t(M2Y ) Plugging-in Expressions Û1 and ÛY .

= (X t
1M

t
2M2X1)

−1(X t
1M2M2Y ) Distributing Transpose

= (X t
1M2X1)

−1(X t
1M2Y ) Using idempotency and symmetry of M2

(b) Show that the system in Equation 3.1 can be written in block-partition form as:[
X t

1X1 X t
1X2

X t
2X1 X t

2X2

][
β̂1

β̂2

]
=

[
X t

1Y

X t
2Y

]

Solution. The transpose of X in block-partition form is
[
X t

1

X t
2

]
. Therefore

X tX =

[
X t

1

X t
2

] [
X1 X2

]
=

[
X t

1X1 X t
1X2

X t
2X1 X t

2X2

]

Similarly we can show that

X tY =

[
X t

1

X t
2

]
Y =

[
X t

1Y

X t
2Y

]

(c) Show that second row can be rewritten as β̂2 = (X t
2X2)

−1(X t
2Y −X t

2X1β̂1).

Solution. The formula for the second row is (X t
2X1)β̂1 + (X t

2X2)β̂2 = X t
2Y . We

can solve this equation in terms of the second coefficient as β̂2 = (X t
2X2)

−1(X t
2Y −

X t
2X2β̂1).
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(d) Plug the above result into the first row of equations and show that (X t
1M2X1)β̂1 =

(X t
1M2Y ). Conclude that β̂1 = β̃1.

Solution. The equation in the first row is X t
1X1β̂1+X

t
1X2β̂2 = X t

1Y . Plugging-in
the result in part (c) we get that

X t
1X1β̂1 +X t

1X2(X
t
2X2)

−1X t
2Y −X t

1X2(X
t
2X2)

−1X t
2X1β̂1 = X t

1Y

X t
1X1β̂1 +X t

1P2Y −X t
1P

t
2X1β̂1 = X t

1Y (Definition P2)
X t

1(I − P2)X1β̂1 = X t
1(I − P2)Y (Grouping terms)

X t
1M2X1β̂1 = X t

1M2Y (Definition M2.)

2. In the detrending example:

(a) Show that X full rank implies that X1 and X2 are full rank. (Hint: Prove by
contradiction)

Solution. (By contradiction) suppose that X1 or X2 are not full rank. Suppose
WLOG that it is X2. Then by Corollary 2.2.1 we can write one of the columns as
a linear combination of the other columns in X2. However, this implies that one
of the columns of X can be written as a linear combination of other columns in
X, implying that X is not full rank. This is a contradiction.

(b) Define B = M2X1. Show that replacing X1 with the matrix B does not change
the image, i.e. Im(X1,X2) = Im(B,X2). (Hint: Modify Lemma 3.1.1)

Solution. First rewrite B = M2X1 = X1 − X2(X
t
2X2)

−1X t
2X1 and define Θ :=

(X t
2X2)

−1X t
2X1, which is a k2 × k1 vector. Then B = X1 −X2Θ.

(i) Im(B,X2) ⊆ Im(X1, X2). Suppose that z ∈ Im(B,X2). Then there exists a

vector β =

[
β1

β2

]
, where β1 ∈ Rk1 and β2 ∈ Rk2 such that z = [B,X2]β. This

can be decomposed as Bβ1+X2β2, which is equal to (X1−X2Θ)β1+X2β2 and
can be written in the formX1β1+X2(−Θβ1+β2). Therefore, x ∈ Im(X1, X2).
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(ii) Im(X1, X2) ⊆ Im(B,X2). Suppose that z ∈ Im(X1, X2). Then there exists

a vector β =

[
β1

β2

]
, where β1 ∈ Rk1 and β2 ∈ Rk2 such that z = [X1, X2]β.

This can be decomposed as X1β1 +X2β2, which is equal to (B +X2Θ)β1 +

X2β2 and can be written in the form Bβ1 + X2(Θβ1 + β2). Therefore, x ∈
Im(B,X2).

(c) Show that if X is full rank then (X t
1M2X1) is full rank. (Hint: Review Linear

Regression Section)

Proof. The matrix can be rewritten as X t
1M2X1 = (X t

1M
t
2M2X1) because M2

idempotent and symmetric implies that M2 =M t
2M2. Therefore the equation can

be written as (M2X1)
t(M2X1). By Lemma 2.4.1, the gram matrix is full rank if

and only B =M2X1 is full rank.
Now let us show that B = M2X1 is indeed full rank. Suppose not. Then there
exists some nonzero vector c1 6= 0 such that

(I −X2(X
t
2X2)

−1X t
2)X1c1 = 0.

Define c2 = (X t
2X2)

−1X t
2X1c1, and hence the above equation could be rewritten as

X1c1 −X2c2 = 0.

Since (c1, c2) is a nonzero vector, this contradicts the condition that X is full
rank.
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17.4 Convex Sets (I): Hyperplanes
1. For any p ∈ Rn\{0} and a ∈ R, let

h(p, a) ≡
{
x ∈ Rn|pTx ≥ a

}
be the half space generated by the hyperplane H(p, a). Assume D is a closed subset
of Rn. Let E be the intersection of all half spaces that contain D, i.e.

E ≡
⋂

h(p,a)⊇D

h(p, a).

Prove D is convex if and only if D = E. This gives another characterization of
convexity. (Hint: separating hyperplane theorem.)

Solution. If D = E, then D is clearly convex because each half space in the intersec-
tion is convex.

Now assume D is convex. Because D is contained in each of the half space in the
intersection, D ⊆ E. Assume there is x ∈ E but x /∈ D. Then because D is convex
and closed, there exists a hyperplane H(p∗, a∗) that strictly separates x and D:

p∗Td > a∗ > p∗tx ∀d ∈ D.

The first inequality implies D ⊆ h(p∗, a∗), implying E ⊆ h(p∗, a∗). But x ∈ E implies
p∗Tx ≥ a∗, a contradiction. Hence E = D.

2. Assume U ⊂ Rn is convex. Let x∗ ∈ U be a point. Prove the followings are equivalent:

(a) there is no x ∈ U such that xi > x∗i for all i = 1, · · · , n,

(b) there exists λ ∈ Rn
+\{0} such that x∗ solves

max
x∈U

λTx.

Solution. (a)=⇒(b): Define W ≡
{
x ∈ Rn

∣∣xi > x∗i ∀i = 1, · · · , n
}

. The set W is
nonempty and convex, and W ∩U = ∅ by assumption. Then by supporting hyperplane
theorem, there exists λ ∈ Rn\{0} and real number c such that

λTy ≥ c ≥ λTx, ∀y ∈ W, x ∈ U.
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Because x∗ is a limit point of W by construction, clearly λTx∗ ≥ c ≥ λTx for all
x ∈ U . It remains to show λ ≥ 0. Assume λi < 0 for some i. For any arbitrary
ỹ ∈ W , λT (ỹ+nei) tends to −∞ as n→∞, where ei is the ith unit vector in Rn. But
ỹ + nei ∈ W for all n, contradicting λTy ≥ c for all y ∈ W .

(b)=⇒(a): Suppose there exists λ ∈ Rn
+{0} such that λTx∗ ≥ λTx for all x ∈ U . Pick

any x ∈ Rn satisfying xi > x∗i for all i. Because λi ≥ 0 and λ 6= 0, we have λTx > λTx∗.
Thus such x is not in U .

3. Let D be a nonempty convex subset of Rn. Prove its closure D is convex.

Solution. Pick any x, x′ ∈ D. There must exist sequences {xn} ⊂ D and {x′n} ⊂ D

such that xn → x and x′n → x′ (if x ∈ D, then let xn = x). So λxn + (1 − λ)x′n ∈ D
for all λ ∈ [0, 1]. Because λxn + (1− λ)x′n converges to λx+ (1− λ)x′, λx+ (1− λ)x′

is a point in D.
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17.5 Convex Sets (II): Cones
1. There are several different characterizations of Farkas’ Lemma. For example

Lemma 17.5.1 (Farkas’ Lemma V2). Let A be an m × n matrix and b ∈ Rm. Then
one and only one is true:

(i) There exists x ∈ Rn such that Ax ≤ b.

(ii) There exists y ∈ Rm such that y ≥ 0m×1, y
tA = 01×n, y

tb < 0.

In this exercise, you will prove the lemma.

(a) Define C = [A,−A, Im×m] ∈ Rm × R2n+m. Show that condition (i) is equivalent
to b ∈ Cone(C) (Hint: Use properties of block-partitioned matrices and define a
vector z ∈ R2n+m

+ ).

Solution. Before we proceed with the proof we will analyze an object in Cone(C).
The vector z ∈ Cone(C) if there exists a vector λ ∈ R2n+m

+ such that z = Cλ. In
block-partition form this means that:

z =
[
A −A I

]λ1λ2
λ3

 = Aλ1 − Aλ2 + λ3 = A(λ1 − λ2) + λ3

( =⇒ ) We show that condition (i) implies that b ∈ Cone(C). Suppose that there
exists an x ∈ Rn such that Ax ≤ b. Set λ3 = b−Ax ≥ 0. For each entry of xj set
λ1j = xj if xj ≥ 0 and zero otherwise. Similarly, set λ2j = −xj if xj < 0 and zero
otherwise. Then x = λ1 − λ2 and λ1, λ2 ∈ R+

n . Therefore, b ∈ Cone(A).
(⇐= ) If b ∈ Cone(C), there exists λ2n+m+ such that b = Cλ. Set x = λ1−λ2 ∈ Rn.
By definition b = Ax+ λ3 ≥ Ax since λ3 ≥ 0m×1.

(b) Show that condition (ii) is equivalent to: There exists y ∈ Rm such that ytC ≥
01×(2n+m) and ytb < 0.

Proof. Before we show the equivalence, let us express the ytC in block form.

ytC = yt
[
A −A I

]
≥ 0 ⇐⇒

ytA ≥ 01×n

−ytA ≥ 01×n

yt ≥ 01×m
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Combining the two inequalities gives us ytA = 01×n and yt ≥ 01×m. We can
transpose yt to show that the two conditions are identical.

(c) Use the original Farkas’ Lemma to prove (Version 2).

Solution. Apply Farkas’ Lemma with the matrix C. Then either the statement
in question (a) occurs or the statement in question (b). The proof is completed
between these statements and those of the lemma that we want to prove.

2. Consider an alternative restriction on asset prices.

Definition 17.5.1 (Pricing Restrictions). Suppose that there does not exist an x ∈ Rn

such that (qtx ≤ 0 and Rx > 0m×1) or such that (qtx < 0 and Rx ≥ 0m×1).

(a) Write down an economic interpretation of this condition.

Solution. It says that a market is arbitrage free if an investor cannot purchase
a portfolio at (1) zero cost or lower and obtain a positive return in at least one
state, or (2) get paid for the assets (negative costs) and receive a non-negative
return.

(b) Suppose that there exists a set of portfolio weights x ∈ Rn that yield positive
returns in every state (Πx � 0). Show that Rx > 1m×1q

tx. Give a simple
example of a return matrix R, a price vector q and a portfolio x where this holds
but the conditions in Definition 5.5.1 does not hold.

Proof. By definition, the expected profit from a portfolio is Πx = Rx− 1n×1q
tx.

Then Πx � 0 implies that Rx � 1n×1q
tx. Consequently, Rx > 1n×1q

tx. Let
n = m = 1, and q = 1 and R = 2. Then x = 1 ensures that Πx � 0. However,
qtx > 1 and Rx > 0.

(c) Suppose that there exists a probability vector α ∈ Rm with strictly positive
entries which satisfies αtΠ = 01×n. Show that Definition 5.5.1 is satisfied.

Proof. If there exists a vector α ∈ Rm with strictly positive probabilities such
that αtΠ = 01×n then αtRx = αt1m×1q

tx. Suppose that (i) Rx > 0 and qtx ≤ 0,
then since α� 0 then αtRx > 0 and αt1qtx ≤ 0. On the other hand if (ii) Rx ≥ 0

and qtx < 0 then αtRx ≥ 0 and αt1qtx < 0. This a contradiction because we
should have αtRx = αt1m×1q

tx.
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17.6 Quadratic Forms
1. Let A be an n× n square matrix. Assume:

xTAx = 0, ∀x ∈ Rn.

(a) Prove all diagonal components of A are 0 ∈ R.

Solution. Let x = ei be the i-th unit vector in Rn. Then aii = eTi Aei = 0.

(b) Show by example that condition (6.1) does not imply A = 0.

Solution. For example

A =

(
0 1

−1 0

)
works.
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17.7 Determinants
A matrix Bn×n is positive definite if ∀x ∈ Rn, xTBx > 0. An equivalent definition of positive
definiteness can be formulated using the determinant:

B =

b11 ... bn1

... ... ...

bn1 ... bnn


Define the leading principal minor k of B, as the matrix formed by taking the upper left

(k × k) submatrix. In other words:

B1 =
[
b11

]
, B2 =

[
b11 b12

b21 b22

]
, ..., Bn =

b11 ... bn1

... ... ...

bn1 ... bnn


A matrix is positive definite if and only if ∀i ∈ {1, ..., n}, det(Bi) > 0. (Take this as a

given, you do not need to prove it).

1. Define a function F :Mn×n → Rn. F (B) = (det(B1), ...., det(Bn)). Reformulate the
definition of positive definiteness in terms of F (B).

Solution. The condition is: A matrix is positive definite if and only if F (B) ∈ Rn
++.

Remark As a reminder, the set Rn
++ is the set in Rn that has strictly positive com-

ponents for all dimensions.

2. Define a metric for the distance between two matrices, d(A,B). Show that it is a
metric: that it is non-negative, symmetric and satisfied the triangle inequality.

Solution. Let vec(A), vec(B) be the vectorized versions of the matrices (A,B). Then
let us define the distance between two matrices as:

d(A,B) = |vec(B)− vec(A)|Rmn

d(A,B) =
√
(a11 − b11)2 + ...(an1 − bn1)2 + ...+ (amn − bmn)2

where | · |Rmn is the vector norm in Rmn. This metric satisfies the three properties of
a metric (because the vector metric is a proper metric):
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(a) It is non-negative and A = B iff d(A,B) = 0.

(b) It is symmetric. d(A,B) = d(B,A).

(c) It satisties the triangle inequality :

d(A,C) ≤ d(A,B) + d(B,C)

3. Show that the function F (B) is continuous.

Solution. Let Fi(B) be the ith coordinate of F (B). A vector valued function is con-
tinuous if and only if all of its components are continuous functions. Therefore we only
need to prove that Fi(B) is continuous ∀i ∈ {1, ..., n}.

Fi(B) = det(hi(B)) = det(Bi), where hi(B) is a functions that selects the submatrix
Bi. We discussed in class that the determinant is a continuous function because it is
essentially a polynomial of the components of a matrix, and polynomial functions are
always continuous. Furthermore hi(B) is also a continuous function (it only selects
elements from B). Therefore the composite function Fi(B) is also continuous.

Remark Continuity has to be defined within a metric space. We can choose the metric
we selected in part (b).

4. Show that the set of positive definite matrices of size (n) is an open set in Mn×n.

Remark This shows that under small perturbations in the components of a positive
definite matrix, the resulting matrix preserves the property of positive definiteness.

Solution. One definition of continuity that is very useful in the case is that a func-
tion is continuous if and only if the pre-image of an open set is also an open set in
the domain. In this cases a matrix is positive definite if F (B) ∈ Rn

++. The set Rn
++ is

an open set. Therefore, the set of matrices that satisfy the condition is also an open set.

We can also derive the proof using ϵ− δ arguments. Suppose that a matrix is positive
definite, then F (B) ∈ Rn

++. There exists an ϵ > 0 such that the all values in an open
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ball around F (B) also belong to Rn
++. By the definition of continuity ∃δ > 0 such that

∀B′s.t.d(B,B′) < δ =⇒ d(F (B), d(F (B′)) < ϵ. This means that a neighborhood
around B is also positive definite. Thus the set of positive definite matrices is an open
set.
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17.8 Eigenvalues and Eigenvectors
1. (25 points) Let P be an n× n matrix.

(a) (5 points) Define a markov matrix P as an n × n matrix that has non-negative
entries where the entries of each column sum to one. Let π be a non-negative
vector whose entries sum to one. Show that π does not belong to the kernel.
Further show that Pπ is a vector whose entries sum to one.

Solution.

P =


p11 p12 · · · p1n

p12 p22 · · · p1n
... ... . . . ...
pn1 pn2 · · · pnn

 , π =


π1

π2
...
πn


Then Pπ can be written as:

Pπ = π1


p11

p21
...
pn1

+· · ·+πn

p1n

p2n
...
pnn

 =
∑
i

πjpj := A linear combination of the columns

Therefore, the sum of the entries on Pπ is:

∑
i

∑
j

πjpij =
∑
j

πj
∑
i

pij =
∑
j

πj = 1

The second equality changes the order of the sum. The third equality uses the
fact that the elements of each column of P sum to 1. The fourth equality uses
the fact that the entries of πi sum to one.
π belongs to the kernel ⇐⇒ Pπ = 0. However, since its entries of Pπ sum to
one, Pπ 6= 0. Therefore, π is not part of the kernel.

Using the fact that π is non-negative is not necessary to prove the above proper-
ties. However, it implies that Pπ has non negative entries.
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pij ≥ 0 ∀i, j ∈ {1, ..., n}

=⇒ πjpij ≥ 0 since πj ≥ 0, ∀j

=⇒
∑
j

πjpij ≥ 0 which is the ith entry of Pπ

(b) (3 points) Now suppose that limm→∞ Pm → P ∗. Show that P ∗ is also a markov
matrix and show that π does not belong to its kernel. (Hint: Show that every P n

is markov).

Solution. First we will show that Pm is markov. We will do this by induction.
For m = 2:

P 2 = PP =

 ↑ · · · ↑
Pp1 · · · Ppn

↓ · · · ↓


Notice that the columns of P are non-negative vectors that sum to one. Therefore,
Ppi is a non-negative vector whose entries sum to one in each column, by the proof
in the previous exercise. For n > 2:

Pm = PPm−1

Since Pm is markov, its columns are non-negative entries whose entries sum to
one in each column, it follows that Pm is also markov. Let pijm denote the i, j
entry of Pm.
We can summarize the set of conditions that define a markov matrix for a matrix
Pm:

pijm ≥ 0, ∀i, j ∈ {1, ..., n}∑
j

pijm = 1, ∀i, j ∈ {1, ..., n}

Notice that if pijm → p∗ij, then it still satisfies the first weak inequality, and the
second equality.This means that the set of markov matrices is closed. Therefore,
in the limit it still satisfies the restrictions of a markov matrix. This completes
the proof of why P ∗ is markov.
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(c) (2 points) Show that if P is symmetric, then P ∗ is symmetric.

Solution. Firs we will show that Pm is symmetric. We will prove this by induc-
tion. For m = 2:

(PP )t = P tP t = P

For n > 2: (Pm)t = (PPm−1)t = (P (m−1))tP t = P (m−1)P = Pm. This shows that
Pm is symmetric. Notice that a matrix is symmetric iff:

pijm − pjim = 0 ∀i, j ∈ {1, ..., n}

If pijm → p∗ij, it will still satisfy this equality b

(d) (5 points) Suppose that P ∗ is such that for every π, P ∗π = π∗, for a fixed π∗.
Write down what the matrix P ∗ has to be for π∗ = (0.2, 0.3, 0.4, 0.1) if P ∗ is 4×4.

Solution. We will use the elementary basis to construct P ∗ :

P ∗ =

 ↑ · · · ↑
Pe1 · · · Pen

↓ · · · ↓

 =

 ↑ · · · ↑
π∗ · · · π∗

↓ · · · ↓


This is a matrix with identical column vectors π∗. Since Pπ is just a linear
combination of the columns, with weights adding to one, then the resulting vector
is just π∗, as desired. For the example 4× 4 example suggested:

P ∗ =


0.2 0.2 0.2 0.2

0.3 0.3 0.3 0.3

0.4 0.4 0.4 0.4

0.1 0.1 0.1 0.1



(e) (5 points) Under the previous property, for what set of vectors π∗ will the implied
P ∗ be symmetric. If it is symmetric, is it idempotent? If so, what is its rank?
(Note that if P is symmetric, it implies very special restrictions on what P should
converge to).
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Solution. In the previous questions we established that under the previous prop-
erty, p∗ij = π∗

i , ∀i, j ∈ {1, ..., n} (all columns are identical to π∗).
On the other hand, symmetry implies that p∗ij = p∗ji. Suppose that we take the
first column: π∗

i = p∗i1 = p∗1i = π∗
1, ∀i{1, ..., n}. Therefore all the entries of π∗ are

identical and equal to 1/n because they have to add up to 1. For the 4× 4 case
this means:

P ∗ =


0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25



(f) (2 points) Construct an example of a 2 × 2 symmetric matrix P that doesn’t
converge. (Hint use zeros and ones only). Compute its eigenvalues. Use the
spectral decomposition to give a reason why it doesn’t converge.

Solution. An example of a 2× 2 matrix that doesn’t converge is:

P =

[
0 1

1 0

]

The matrix P changes the order of the columns. It can be shown by induction
that:

Pm =



0 1

1 0

 m odd1 0

1 0

 m even

To compute its eigenvalues we need to compute the roots of:

det(P − λI) = det

[
−λ 1

1 −λ

]
= λ2 − 1 = 0

Then the roots are: λ1 = 1, λ2 = −1. Now we need to compute the eigenvectors
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for each eigenvalue, respectively:

(P − I)v1 =

[
−1 1

1 −1

]
v1 = 0 =⇒ v1 ∈ span{

[
1

1

]
}

(P + I)v2 =

[
1 1

−1 −1

]
v2 = 0 =⇒ v2 ∈ span{

[
1

−1

]
}

Therefore we can construct a spectral decomposition of P . Notice that first we

have to obtain orthogonal vectors from each span: ṽ1 =
[
1/
√
2

1/
√
2

]
, ṽ2 =

[
1/
√
2

−1/
√
2

]
.

P =

 ↑ ↑
ṽ1 ṽ2

↓ ↓

[λ1 0

0 λ2

][
← ṽt1 →
← ṽt2 →

]

=

[
1√
2

1√
2

− 1√
2

1√
2

][
1 0

0 −1

][
1√
2
− 1√

2
1√
2

1√
2

]
CΛCt

We can verify that this decomposition recovers the original matrix P . We can
now use this decomposition to compute Pm:

Pm = PP · · ·P

= (CΛCt)(CΛCt) · · · (CΛCt)

= CΛmCt

= C

[
(1)m 0

0 (−1)m

]
Ct

The second to third line follow from the fact that CtC = I, since the vectors
are orthonormal. This means λm oscillates between −1 and 1, depending on m,
and thus never converges. The example shows that symmetry does not guarantee
convergence.

General remarks for other types of exercises: Notice that if one of the
eigenvalues were strictly less than one in absolute value then λm would converge
to zero. However, at least one of them has to be greater than or equal to zero,
otherwise Λm → 0 and P ∗ is not a markov matrix (which contradicts what we
proved earlier). If |λ| > 1 then the values would be explosive and diverge to
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infinity.

There are many more results for the eigenvalues of markov matrices that are not
symmetric, even those that don’t have a spectral decomposition. The key thing is
to prove which and how many many eigenvalues are strictly less than one, equal
to one and strictly greater than one. I encourage you to keep these concepts in
mind in future work involving markov chains.

(g) (3 points) Show that the following asymmetric P converges to a P ∗ such that
P ∗π = π∗. Compute P ∗ and π∗.

P =

[
0.5 0

0.5 1

]

Solution. I will prove that Pm =

[
(0.5)m 0

1− (0.5)m 1

]
by using induction. The result

holds trivially for m = 1, then for m > 1:

Pm = PPm−1

=

[
0.5 0

0.5 1

][
(0.5)m 0

1− (0.5)m 1

]

=

[
(0.5)(m+1) 0

(0.5)(0.5)m + (1− (0.5)m) 1

]

=

[
(0.5)(m+1) 0

1− (0.5)(m+1) 1

]

Then P ∗ = limn→∞ Pm =

[
0 0

1 1

]
and π∗ =

[
0

1

]
. This means that regardless of

the initial vector π, Pmπ will converge to π∗. This highlights that both symmetric
and non-symmetric matrices can converge.

2. This questions asks you to analyze the eigenvalues of stochastic matrices:

(a) (3 points) Let v ∈ Rn. Show that the entries of the vector Pv add up to
∑n

j=1 vj.
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Solution. Let 1n ∈ Rn be a vector with only 1s in each entry. Then the sum of
the entries of Pv can be represented as 1tnPv. This is a quadratic form that can
be represented as a double sum.

1tnPv =
n∑
i=1

n∑
j=1

Pijvj

=
n∑
j=1

vj

n∑
i=1

Pij

=
n∑
j=1

vj

(b) (9 points) Let v∗ ∈ Rn, v 6= 0 be an eigenvector of P , with corresponding eigen-
value λ. Prove the following statements:

i. (1 point) P sv∗ = λsv∗, s ∈ N.

Solution. We can prove this by induction. For s = 1, by definition of an
eigenvector. P 1v∗ = Pv∗ = λ1v∗.
Suppose it holds for s. Then P s+1v∗ = P (P sv∗) = P (λn)v∗ = λsPv∗ =

λsλv∗ = λs+1v∗.

ii. (4 points) Show that if
∑n

j=1 v
∗
j 6= 0, then λ = 1. [Hint: show that P s is also

markov].

Solution. P is a matrix whose columns (p1, ..., pn) sum to one. Let P ′ be
another markov matrix. Then PP ′ is a matrix with columns (Pp′1, ..., Pp

′
n).

By the result in part (a) the columns of PP ′ must sum to one. Furthermore,
since P and P ′ have non-negative entries, PP ′ has to have non-negative en-
tries. Now we can show that P s is markov by induction. For s = 2, if P = P ′

then PP ′ = P 2, which is markov. Now suppose that it holds for s. Then
P ′ = P s. Then P s+1 = PP s = PP ′ which is also markov.

Therefore, by the result in part (a) the entries of P sv∗ have to sum up to∑n
j=1 v

∗
j for all s. From the result in part (b)(i) we know that P sv∗ = λsv∗.

Therefore the entries sum up to λs
∑n

j=1 v
∗
j . This means that λs = 1, ∀s =⇒
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λ = 1.

Additional result: It is also possible to show that there exists at least one
vector with eigenvalue 1. Since det(B) = det(Bt), ∀B then det(P − λI) =

det(P t − λI). This means that the eigenvalues of P and P t are the same
(although the eigenvectors can be different). Since the rows of P t sum to
one, it can be shown that 1n is an eigenvector of P t with eigenvalue λ = 1.
Therefore, P has at least one eigenvector with λ = 1, which is not necessarily
1n.

iii. (4 points) Show that if
∑n

j=1 v
∗
j = 0, v∗ 6= 0, then |λ| ≤ 1. [Hint: show that

for any fixed v 6= 0 (not necessarily an eigenvector), supP ||Pv|| ≤ M < ∞,
P markov].

Solution. Let w = Pv. Notice that ||Pv|| =
√∑n

i=1w
2
i =

√∑n
i=1(
∑n

j=1 Pijvj)
2.

This is a continuous function of the Pij. Suppose that we represent P as
vec(P ) ∈ Rn2 . If P is markov, then each entry is bounded Pij ∈ [0, 1] and∑n

i=1 Pij = 1, ∀j, which is a closed set. Then for fixed v the norm ||Pv||
is a continuous function from a compact space in Rn2 (the set of markov
matrices) into R. By the maximum theorem, there exists a markov matrix
P ∗ such that ||P ∗v|| = maxP ||Pv|| = supP ||Pv|| = M < ∞. Consequently
||Pv|| ≤M , for all P markov.

Notice that P n is also markov, therefore ||P nv∗|| ≤ M . By part (b)(i), this
implies that ||λnv∗|| = |λ|n||v∗|| ≤ M, ∀n. Since v∗ 6= 0, ||v∗|| > 0 and
|λ|n ≤ M

||v∗|| , ∀n. If |λ| > 1, there exists an n large enough that |λ|n > M
||v|| .

This is a contradiction, therefore |λ| ≤ 1.
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17.9 Introduction to Differentiation

1. Let f(x) =

xα sin(1/x) x 6= 0

0 x = 0
. For what values of α is f(x) differentiable at x = 0?

Solution. The function is not well defined some some non-integer values of α. For
example, if α = 0.5, xα−1 = 1/

√
x. Therefore, I will restrict this proof to integer values

of α.

S(x) =
f(x)− f(0)

x− 0
=
xα sin(1/x)

x
= xα−1 sin(1/x)

• If α = 1, S(x) = sin(1/x), which oscillates around for x close to 0.

• If α < 1 then xα−1 is not defined for some values of α. For example the sequence
xn = 1/(2πn) has the property that S(xn) = 0 and if xn = 1/(2πn + (π/2)),
then S(xn) = (2πn+(π/2))α−1 →∞. Therefore, it doesn’t satisfy the sequential
definition of convergence.

• If α > 1 it does converge:

−xα−1 ≤ xα−1 sin(1/x) ≤ xα−1

Since limx→0 x
α−1 = 0, then limx→0 S(x) = 0. Then the derivative exists for

integer values of α strictly greater than one but not for other integer values of α.

2. Let f, g : R→ R be two functions. Let y0 = g(x0) for some x0 ∈ R. Find examples for
the following cases when:

(a) g is differentiable at x0 and f is not differentiable at y0;

(b) g is not differentiable at x0 and f is differentiable at y0;

(c) g is not differentiable at x0 and f is not differentiable at y0,

but f ◦ g(x) is differentiable.

Solution. (a) Consider f(y) = |y|, g(x) = x2. Consider x0 = 0 and y0 = 0. Then
f ◦ g(x) ≡ x2, hence differentiable at x0.

(b) Consider f(y) = y2, g(x) = |x| and x0 = 0.
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(c) Consider

f(x) = g(x) =

{
1
x

x 6= 0,

0 x = 0.

Then neither f nor g is continuous at 0. But f ◦ g(x) ≡ x which is differentiable.

3. (Exercise 11 on page 186, Pugh) Assume that f : (−1, 1) → R and f ′(0) exists. If
αn, βn → 0 as n→∞, define the different quotient

Dn =
f(βn)− f(αn)

βn − αn
.

(a) Prove that limn→∞Dn = f ′(0) under each of the following conditions (Hint: First
rewrite this expression in terms of f(βn)−f(0)

βn
and f(αn)−f(0)

αn
and use the sequential

definition of the limit.

i. αn < 0 < βn.

Solution. Rewrite

Dn =
f(βn)− f(0)

βn

βn
βn − αn

+
f(αn)− f(0)

αn

−αn
βn − αn

=
f(βn)− f(0)

βn
+
(f(αn)− f(0)

αn
− f(βn)− f(0)

βn

) −αn
βn − αn

.

Because 0 ≤ −αn

βn−αn
≤ 1, as n→∞, the right hand side tends to f ′(0).

ii. 0 < αn < βn and βn
βn−αn

≤M .

Solution. The proof is similar to previous one. Rewrite

Dn =
f(βn)− f(0)

βn

βn
βn − αn

+
f(αn)− f(0)

αn

−αn
βn − αn

=
f(αn)− f(0)

αn
+
(f(βn)− f(0)

βn
− f(αn)− f(0)

αn

) βn
βn − αn

.

Because βn
βn−αn

is bounded, the limit exists and is equal to f ′(0).

iii. f ′(x) exists and is continuous for all x ∈ (−1, 1).

Solution. For each n, the mean value theorem implies that there exists
θn ∈ (0, 1) such that

Dn = f ′(αn + θn(βn − αn)
)
.
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Taking limits on both sides, the continuity of f ′ implies limDn = f ′(0).

(b) Set f(x) = x2 sin(1/x) for x 6= 0 and f(0) = 0. Observe that f is differentiable
everywhere in (−1, 1) and f ′(0) = 0. Find αn and βn that tend to 0 in such a
way that Dn converges to a limit unequal to f ′(0).

Solution. Let βn = 1
n
+ 1

n2 and αn = 1
n
.
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17.10 Mean Value Theorems
1. In the auctions example.

(a) Assume in addition that σ(v) is a function such that ∀v ∈ [0, 1], b∗(v) = σ(v) (there
is a symmetric equilibrium). Use Equation 10.5 to show that:

σ(v) = v − σ′(v)
F (v)

F ′(v)

The right hand side is called the virtual value.

Solution. Substituting b(v) = σ(v), then σ−1(b) = v. The equation simplifies to:

(v − σ(v))F ′(σ−1(σ(v)))
1

σ′(σ−1(σ(v)))
− F (σ−1(σ(v))) = 0

(v − σ(v))F ′(v)
1

σ′(v)
− F (σ−1(σ(v))) = 0

(v − σ(v))F ′(v)
1

σ′(v)
− F (v) = 0

Rearranging the equation,

σ(v) = v − σ′(v)
F (v)

F ′(v)

(b) Using the above equation and the signs of the derivatives, show that if ∀v ∈
[0, 1], b∗(v) = σ(v) then ∀v ∈ [0, 1], σ(v) ≤ v (this show that in a symmetric
equilibrium everyone bids weakly below their valuation).

Solution. Rearrange the above formula:

σ(v) = v − σ′(v)
F (v)

F ′(v)

.
Since the second term is negative, then σ(v) ≤ v.
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2. Assume f function is continuous on [0,∞) and differentiable on (0,∞). Suppose
f(0) = 0 and f ′ is increasing on (0,∞). Prove

g(x) =
f(x)

x

is increasing on (0,∞).

Solution. Consider x2 > x1 > 0. Then by the mean value theorem, there exists
ξ1 ∈ (0, x1) and ξ2 ∈ (x1, x2) such that

f(x1) = f ′(ξ1)(x1 − 0) + f(0) = f ′(ξ1)x1

and

f(x2) = f ′(ξ2)(x2 − x1) + f(x1) = f ′(ξ2)(x2 − x1) + f ′(ξ1)x1 ≥ f ′(ξ1)x2,

where the inequality comes from the fact that ξ2 > ξ1 and f ′ is increasing. Therefore

f(x2)

x2
≥ f(x1)

x1
.
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17.11 Taylor Expansion
1. Suppose f : R→ R is twice differentiable. Assume f(0) > 0, f ′(0) < 0 and f ′′(x) < 0

for all x ∈ R. Prove there exists ξ ∈
(
0,− f(0)

f ′(0)

)
such that f(ξ) = 0.

Solution. By Taylor’s theorem, we have

f(x) = f(0) + f ′(0)x+
f ′′(η)

2
x2 for some η between 0 andx.

Then
f
(
− f(0)

f ′(0)

)
=
f ′′(η)

2

(
− f(0)

f ′(0)

)2
< 0.

Because f(0) > 0, there exists ξ ∈
(
0,− f(0)

f ′(0)

)
such that f(ξ) = 0.

2. Assume f : [a, b]→ R is twice differentiable and f ′(a) = f ′(b) = 0. Prove there exists
ξ ∈ (a, b) such that ∣∣f ′′(ξ)

∣∣ ≥ 4

(b− a)2
∣∣f(b)− f(a)∣∣.

(Hint: expand f
(
a+b
2

)
at a and b respectively)

Solution. By Taylor’s theorem, we have

f
(a+ b

2

)
= f(a) + f ′(a)

b− a
2

+
1

2
f ′′(ξ1)

(b− a
2

)2
for some ξ1 ∈

(
a,
a+ b

2

)
,

and

f
(a+ b

2

)
= f(b)− f ′(b)

b− a
2

+
1

2
f ′′(ξ2)

(b− a
2

)2
for some ξ2 ∈

(a+ b

2
, b
)
.

Then

4

(b− a)2
∣∣f(b)−f(a)∣∣ = 1

2

∣∣f ′′(ξ1)−f ′′(ξ2)
∣∣ ≤ 1

2

(∣∣f ′′(ξ1)
∣∣+∣∣f ′′(ξ2)

∣∣) ≤ max
{∣∣f ′′(ξ1)

∣∣, ∣∣f ′′(ξ2)
∣∣}.

3. Let f : [a, b] → R be twice differentiable. Assume supx∈[a,b] |f ′′(x)| ≤ M for some
constant M . Assume also f achieves its global maximum at some point x∗ in (a, b).
Prove ∣∣f ′(a)

∣∣+ ∣∣f ′(b)
∣∣ ≤M(b− a).
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Solution. Because x∗ ∈ (a, b), we know f ′(x∗) = 0. Now apply the mean value
theorem to f ′: there exists ξ1 ∈ (a, x∗) and ξ2 ∈ (x∗, b) such that

f ′(a) = f ′(x∗) + f ′′(ξ1)(a− x∗),

and
f ′(b) = f ′(x∗) + f ′′(ξ2)(b− x∗).

Hence
f ′(a) = f ′′(ξ1)(a− x∗) and f ′(b) =

f ′′(ξ2)

2
(b− x∗).

Thus,
|f ′(a)|+ |f ′(b)| ≤ |f ′′(ξ1)|(x∗ − a) + |f ′′(ξ2)|(b− x∗) ≤M(b− a).
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17.12 First-Order Differentiation in Rn

1. (Euler’s Equations) Assume f : R2 → R is differentiable. Fix (x, y) ∈ R2. Define
g(t) = f(tx, ty) for all t > 0. Show g is differentiable and

g′(t) = x
∂f

∂x
(tx, ty) + y

∂f

∂y
(tx, ty).

Assume in addition, there exists α > 0 such that

f(tx, ty) = tαf(x, y) ∀t > 0 and ∀(x, y) ∈ R2. (17.1)

Show for all (x, y) ∈ R2,

x
∂f

∂x
(x, y) + y

∂f

∂y
(x, y) = αf(x, y). (17.2)

A function with the property (17.1) is said to be homogeneous of degree α. The
equation (17.2) is called Euler’s formula.

Proof. Fix (x, y) ∈ R2. Let h : R → R2 be the linear mapping t 7→ t

(
x

y

)
. So

g(t) = f(h(t)). Since both f and h are differentiable, we know g is differentiable. By
chain rule,

g′(t) = Dg(t) = Df(h(t))Dh(t) = (
∂f

∂x
(tx, ty),

∂f

∂y
(tx, ty))

(
x

y

)
.

If in addition, (17.1) holds, then we know g′(t) = αtα−1f(x, y) for all t. This implies

x
∂f

∂x
(tx, ty) + y

∂f

∂y
(tx, ty) = αtα−1f(x, y), ∀t.

Evaluating both sides at t = 1 yields the desired result.

2. (Exercise 16 on page 347, Pugh) Let f : R2 → R3 and g : R3 → R be defined by
f = (x, y, z) and g = w where

w = w(x, y, z) = xy + yz + zx

x = x(s, t) = st y = y(s, t) = s cos t z = z(s, t) = s sin t
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(a) Find the matrices that represent the linear transformations (Df)p and (Dg)q

where p = (s0, t0) = (0, 1) and q = f(p).

Proof. The representation matrix of (Df)p is t s

cos t −s sin t
sin t s cos t


∣∣∣∣∣∣∣
(s,t)=(0,1)

=

 1 0

cos 1 0

sin 1 0

 .

The representation matrix of (Dg)q is

(y + z, x+ z, x+ y)|(x,y,z)=(0,0,0) = (0, 0, 0).

(b) Use the Chain rule to calculate the 1× 2 matrix [∂w/∂s, ∂w/∂t] that represents
(D(g ◦ f))p.

Proof. It is simply

(0, 0, 0)

 1 0

cos 1 0

sin 1 0

 = (0, 0).

(c) Plug the functions x = x(s, t), y = y(s, t) and z = z(s, t) directly into w =

w(x, y, z) and recalculate [∂w/∂s, ∂w/∂t], verifying the answer given in (b).

Proof. Plugging x, y, z into w yields

w(s, t) = s2t cos t+ s2 cos t sin t+ s2t sin t.

Hence

(
∂w

∂s
,
∂w

∂t
)|(s,t)=(0,1)

= (2st cos t+ 2s cos t sin t+ 2st sin t, s2 cos t− s2t sin t− s2 sin2 t+ s2 cos2 t+ s2 sin t+ s2t cos t)|(0,1)
= (0, 0).
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17.13 Second-Order Differentiation in Rn

1. We showed that a matrix representation exists for a linear map. Why does it have to
be unique?

2. Let f : R2 → R2 be defined by

f

(
p1

p2

)
=
(
p31 + p32

)
.

Prove for any p ∈ R2, the matrix that represents (D2f)p is(
6p1 0

0 6p2

)
.

Proof. We will take it as given that we know (Df)p is represented by(
3p21 3p22

)
.

Therefore

||R(v)(u)|| =
∣∣∣∣∣∣(Df)p+v(u)− (Df)p(u)− T (v, u)

∣∣∣∣∣∣
=
∣∣∣∣∣∣ [3(p1 + v1)

2 3(p2 + v2)
2
] [u1
u2

]
−
[
3p21 3p22

] [u1
u2

]
−
[
v1 v2

]( 6p1 0

0 6p2

)[
u1

u2

] ∣∣∣∣∣∣
=
[
3v21 3v22

] [u1
u2

]
= 3v21u1 + 3v22u2

Notice that residual is linear in the second argument by construction. In this case it
is possible to directly compute the operator norm ||R(v)(·)||,

||R(v)(·)|| = sup
u∈Rn,||u||=1

||R(v)(u)|| = sup
u∈Rn,||u||=1

{3v21u1 + 3v22u2}

where u21 + u22 = 1. To compute the sup, it is without loss to consider u1, u2 ≥ 0. Note
that then u2 =

√
1− u21 ≤ 1 − u1, where the equality holds when u1 = 0 or u1 = 1.

Thus we have

3v21u1 + 3v22u2 ≤ 3v21u1 + 3v22(1− u1) ≤ max{3v21, 3v22}

The equality could be achieved bt taking u1 = 1, u2 = 0 if v21 ≥ v22, and u1 = 0, u2 = 1
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if v21 < v22. Therefore, we have shown that ||R(v, ·)|| = max{3v21, 3v22} and hence

||R(v)(·)||
||v||

=
max{3v21, 3v22}

||v||
= max{3(v21/||v||), 3(v22/||v||)}.

|vi| ≤ ||v|| is bounded by construction. Therefore,

lim
v→02×1

v21/||v|| = 0

lim
v→02×1

v22/||v|| = 0

Therefore, R(v)(·) is sublinear and therefore we have show that our candidate matrix
is second derivative.

3. Let f : Rn → R be defined as
f(x) = xTATAx

where A is an n× n matrix. Calculate the matrices that represent (Df)x.

Proof. Let g : Rn → R be such that g(y) = yTy =
∑m

i=1 y
2
i . By calculating the first

order partials, it is easy to see

2(y1, · · · , ym) = 2yT

represents (Dg)y. Let h : Rn → Rn be such that h(x) = Ax. Then A represents (Dh)x.
Since f(x) = g(h(x)), by chain rule (Df)x = (Dg)h(x) ◦ (Dh)x, and

2h(x)TA = 2xTATA

is the representation matrix.

4. Assume that X is an n × k full rank matrix and that Y ∈ Rn. Show that β̂ =

(X tX)−1X tY is the solution to the least squares criterion function by computing the
first order conditions of

(Y −Xβ)t(Y −Xβ)
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17.14 Comparative Statics
1. Consider the Auctions Example in previous chapters. Show that b∗(v) is increasing in
v. [Hint: Use the implicit function theorem].

Solution. Because this b∗(v) is an interior maximum, ∂2

∂b2
Uv(b

∗) < 0. Furthermore,
since σ is strictly increasing then σ−1 is also strictly increasing (by using the inverse
mapping theorem we can further show that σ′ > 0).

For applying the implicit function theorem, let H(b, v) = ∂Uv

∂b
= 0. Then

B =
∂H

∂b
=

∂2

∂b2
Uv(b

∗) < 0. Then B−1 < 0

A =
∂H

∂v
=

∂2

∂b∂v
Uv(b

∗) = F ′(σ−1(b))
∂

∂b
σ−1(b) > 0

Using the implicit function theorem:

∂b∗(v)

∂v
= −B−1A > 0

Therefore b∗(v) is an increasing function of v.

2. Consider the following Keynesian IS-LM model. Suppose

Y = C(Y − T ) + I(r) +G

M = L(Y, r)

where Y is GDP, T is taxes, r is interest rate, G is government spending and M is
money supply. The functions C(·), I(·) and L(·, ·) are consumption function, invest-
ment function and money supply function respectively. Assume they are continuously
differentiable and

0 < C ′(x) < 1, I ′(r) < 0,
∂L

∂Y
> 0, and

∂L

∂r
< 0.

Suppose G, M and T are independent variables which can be controlled, Y and r are
dependent variables determined by G, M and T . Analyze the relationships between
{Y, r} and {G,M, T}.
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Solution. Define

f(T,G,M, Y, r) = Y − C(Y − T )− I(r)−G

h(T,G,M, Y, r) = L(Y, r)−M.

Then (
∂f
∂Y

∂f
∂r

∂h
∂Y

∂h
∂Y

)
=

(
1− C ′(Y − T ) −I ′(r)

∂L
∂Y

∂L
∂r

)
.

This matrix is invertible because its determinant ∆ = (1−C ′(Y −T ))∂L
∂r

+I ′(r) ∂L
∂Y

< 0.
Therefore(

∂Y
∂T

∂Y
∂G

∂Y
∂M

∂r
∂T

∂r
∂G

∂r
∂M

)
= −

(
1− C ′(Y − T ) −I ′(r)

∂L
∂Y

∂L
∂r

)−1(
C ′(Y − T ) −1 0

0 0 −1

)

= − 1

∆

(
∂L
∂r

I ′(r)

− ∂L
∂Y

1− C ′(Y − T )

)(
C ′(Y − T ) −1 0

0 0 −1

)

= − 1

∆

(
∂L
∂r
C ′(Y − T ) −∂L

∂r
−I ′(r)

− ∂L
∂Y
C ′(Y − T ) ∂L

∂Y
−1 + C ′(Y − T )

)

Therefore ∂Y
∂T

< 0, ∂Y
∂G

> 0, ∂Y
∂M

> 0, ∂r
∂T

< 0, ∂r
∂G

> 0 and ∂r
∂M

< 0.
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