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Part 1

Linear Algebra



Chapter 1

Overview of Linear Algebra

1.1 Matrices

Let n,m > 1 be two integers. A matrix is a two-dimensional array of numbers in R. A

vector is an array that has a single column.

apn Q2 @iz -0 Qin I
Q21 Q22 A23 - Q2p )
A= ] ] ] ] , =
Am1 OGm2 Am3 - Qmp Tn
Sometimes we abbreviate the notation for this matrix by writing it as (a;;), i = 1,--- ,m
and 7 = 1,--- ,n. We say that it is an m by n matrix, or an m X n matrix. The matrix

has m rows and n columns. If m = n, we call it a square matrix. We can define the

multiplication of a matrix times a vector. Let A,, be the m!* row of the matrix.

n
Az D j—1 015

Ax = : = : , xeR"

n
Anz > i1 Q)T

The resulting array Ax is a vector in R™. A linear combination of two vectors, @,y € R" is

defined as
azry + By

w=ax+ Py =
azyn + BYn



where a, 8 € R are scalars. The resulting array is also a vector in R". Each coordinate is
weighted and added separately, that is w; = az; + Bz;.

Multiplication of two matrices can be defined analogously. Let B be a n x K matrix

whose columns by, ..., bg are n X 1 vectors.
Albl s Ale Z?:l aljbjl ce Z?:l aljij
AB = : e : = : . :
Apbr - Apbk D i @mgbjr e 300 amibjxe

Each column of the resulting matrix AB is Abg, 1 < k < K.

We say that a matrix (or vector) is zero matrix (vector) when all its entries are zero.



1.2 Linear Maps and Matrices

We will focus on a particular type of function called a linear map.

Definition 1.2.1. A function 7 : R™ — R™ is a finite linear map if
T(ax + fy) = oT(x) + AT (y)

for all vectors @,y € R™ and scalars «a, f € R.

In this section we lay the groundwork to prove that all finite linear maps have the form
T(x) = Az, where A is an m x n matrix. Clearly not all functions are linear maps. For
example, given the function T'(z) = 2%,z € R, we know that T'(az + By) = (ax + fy)* =
o?x? + 2aBzy + B%y?. This is not equal to oT'(z) + BT (y) = az? + By? for all values of z,y
and «, 3.

1.2.1 Extending Definition

First we need to prove an intermediate lemma. Our objective is to show that a linear map

applies to multiple linear combinations, not just pairwise combinations.

Lemma 1.2.1. T(x) is a finite linear map if and only if for any finite integer K,

K K
(o) =St
k=1 k=1

for all oy, € R, ¥ € R™.

Proof. Proving ( <= ) follows straight from the definition of a linear map by taking K = 2.
Proving ( = ) is the novel part. Many proofs in linear algebra proceed by induction, so
it is helpful to become familiarized with the technique. We know that the results holds for
K = 2. Assume that it holds for some k* > 2, that is:

k* k*
r(Soat) - St
k=1 k=1

10



Now we will prove that it also holds for k* 4 1.

k*+1 ke
T (Z ozkaf:(k)> =T (Z o + ak*ﬂm(’f*“)) By decomposing sum inside function
k=1

k=1
k*
=T (Z ozka:(k)> + e 1 T (2 D) By definition of a linear map
k=1
k*
= Z e T(x®) + e T(x® ) By hypothesis in the inductive step
k=1
k41
= Z o T(x®)). Grouping terms
k=1

Therefore we have shown that the result holds for any finite integer K. Notice that in the
second line we use the definition of a linear map. We plug in weights a = 1 and 3 = o* 1!,

choosing vectors & = Zz; ape® and y = ¥+ according to our previous definitions. [

1.2.2 Examples of Infinite Linear Maps

The notion of linear map can be extended beyond the Euclidean space, such as function
spaces. In this case it is more common to call a linear map an operator rather than a func-
tion. What are examples of function spaces? The set of polynomials, the set of continuous
functions, etc. (all of which have an infinite number of elements). We will only focus on
the Euclidean space, but it is worth commenting that function operators emerge in many

economic applications such as nonparametric econometrics.

Example 1. Let f, g be two differentiable functions and let f’, ¢’ be their derivatives,
and let T" be the differentiation operator. Let T'(f) = f’ and let T'(g) = ¢’. Then T is a
linear map because T'(af + 89)(z) = af’(z) + B¢’ (z) = T (f)(z) + ST (g)(x). This is the
known rule that the derivative of a linear combination two functions is a linear combination

of the derivatives.

Example 2. Let f, g be two functions and define the integral operator as T(f) =
[ f(z)dx. The integration operator is a linear map because T'(af + fg) = [(af(z) +

Bg(z))de = o [ f(z)dz + B [ g(a)dz = oT(f) + BT(9).

11



1.3 Matrices uniquely represent finite linear maps

Linear maps and matrices are the core of linear algebra. We will show that matrices uniquely
represent linear maps by breaking down the result into two lemmas (a common strategy for
a representation theorem). First, if we are given a matrix A we can show that a function of
the form T'(x) = Az is indeed a linear map. Second we will show if a function 7" is a linear

map, then we can construct a unique matrix A such that 7T'(x) = Ax.
Lemma 1.3.1. T(x) = Az is a linear map.

Proof. Let w = ax + Sy. We apply the definition of multiplication of a matrix times a

vector.
D e A1W;
T(w) =Aw = :

Sy Gty
j=1 AmjW;
Then we can substitute each coordinate separately and decompose the above expression as

a sum of two vectors:

> iy aj(ax; + By;) > iy A1jaT; > i1 @13 BY;
Aw = : = : + :
> iy amj(ax; + By;) > i1 Amjae; > i1 @miBY;

The scalars «a, f multiply each element of the respective vector. Therefore, we can pull it

out as a common term.

i1 415 D i1 Q1Y
Aw =« : + 8 :

> i1 mj; > i1 OmjYj

Each vector satisfies the definition of matrix multiplication, Az and Ay, respectively. There-

fore we have shown that Ax is a linear map, since
T(ax + Py) =T (w) = Aw = aAx + fAYy = oT'(x) + T (y).

]

Now we will show that the set of m x n matrices provides an exhaustive representation

of all linear maps.

12



Lemma 1.3.2. For every finite-dimensional linear map T there exists a unique matriz A

such that T'(x) = Az, for all x € R".

Proof. We will proceed by constructing the matrix A. We start off by proposing a candidate
matrix representation Ax evaluated at a finite number of points. To complete the proof we
need to show that T'(x) = Ax for all x € R™.

Our candidate points will be the set of elementary basis vectors e, --- ,e,. The j
vector has a 1 on coordinate j and 0, otherwise. We provide an illustration for n = 3, but

the proof applies to any dimension.

1 0 0
€ = 0 ) €y = 1 ) €3 = O
0 0 1

Notice that any vector can be represented as a linear combination of elementary basis vectors,
because * = z1e; + ... + x,e,. We will construct our matrix A as follows. We give an

illustration for the case that m = 2 and n = 3.

G21 Q22 (23

T T <CL11 a2 G13>
A= | T(e)) - T(en) | =

For example, a; = T'(e;) is a an m x 1 vector, containing coordinates (ay;, ..., am;). Notice

that m is not necessarily equal to n. Now let  be any arbitrary vector in R"™.

D i1 Q15T n n
Ax = : = ijaj = ijT(ej)
j=1 j=1

21 Gy

Notice that from the extended definition of a linear map,

Zx] (e;) (Zx]e]>: )

where = 3 7,
uniqueness assume that there exists another matrix B such that T'(x) = B, with at least
one column such that b; # a;. However, that means b; # T'(e;) and therefore Be; # T'(e;),

which is a contradiction. O]

zje;. Therefore, T'(x) can be represented using the matrix A. To prove

The above lemma is significant because it means that to understand the properties of

13



linear maps we can study m x n matrices without loss of generality.
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1.4 Operator norm for linear maps

The euclidean norm of a vector & in R" is defined as:

]|az||:\/x%+x§+...+x%: Tlx

In theoretical analysis it is also convenient to define a norm for a function, the so-called
“operator norm”. For example, it will allow us to show that the function 7'(x) = Ax is
continuous. As we know, continuity is a desirable property for functions because it means
that “small” disturbances in & will lead to small disturbances in Az, and we can invoke
many theorems in real analysis.

A generic challenge in defining an operator norm is that a function can be evaluated at
multiple points (in fact, any point in R™) but we are only interested in summarizing the
norm with a single scalar. How do we reduce this dimensionality? There are two generic
solutions to this problem: (1) define a weighting scheme to aggregate the points; (2) consider
the extremes. We will follow the latter, using a definition sometimes called the “maximum
stretch”:

|T||:= sup ||T(x)|| (Operator norm) (1.1)
xzeR™:||x||=1
Example:
5 0
. [o 1]’ [[Aw[| = 1/ (521)% + 23

Different values of @ lead to different norms ||Az|| in the target space. Which is the
largest one? If we do not restrict the space of @, we could take x, x5 to infinity and therefore
the norm would be unbounded. However, if we restrict attention to vectors that have unit
norm we obtain a finite supremum. In this case it is possible to verify that ||T'|| = 5. (Try
verifying this on your own. A diagram might help!) This is the “maximum” amount we can

“stretch” a vector of unit length from the domain to the range.

1.4.1 Cauchy-Schwarz Inequality

We first restrict attention to the case with n x 1 matrices (i.e. vectors). We will prove the
well-known Cauchy-Schwarz (CS) inequality, which is of interest in its own right and will
make the proof for general matrices considerably simpler. Our objective will be to impose

bounds on how much a vector can be “stretched” by a matrix.

Definition 1.4.1. The inner product of two vector v, x € R" is the scalar v'x.

15



The CS inequality states that the absolute value of the inner product is bounded by the

multiplication of the norms.

Theorem 1.4.1 (Cauchy-Schwarz Inequality). Suppose that v,x € R™. Then:
lv'z| < ||v|| ||z]| (Cauchy Schwarz Inequality)

Sometimes the (CS) inequality is given a geometric interpretation. For instance, in two
dimensions v'x = ||v|| ||x|| cos(#), where # is the angle between the vectors. The inner
product is a measure of how closely aligned two vectors are. When they are parallel, 8 = 0,

and the equation in the lemma becomes an equality.

The proof only uses the fact that a norm is non-negative (an inequality) which gives rise

to the (CS) inequality by using a clever substitution.
Proof. Let A € R and construct a vector z = v — Az. Since [|z||* > 0 and ||z|]* =
(v — Ax)'(v — Ax), it follows that

viv — 2 lz + Nxlxe > 0

t

Assume WLOG that & # 0. Consider a particular A\ = (”—m ! thus

xte)’

t )2 t)2

(xtx)  (x'z)
We can rearrange the above terms to show that (vlx)? < (vlw)(z'z). Since viz = ||[viz||
(scalar) and v'v = ||v||?, z'x = ||z||? it follows that ||v'z||* < [|v]|?||z||?. The result follows
by taking the square root on both sides. O

1.4.2 Operator Norm Inequality

The operator norm of finite linear maps has two very useful properties, it is finite and we

can define a Cauchy-Schwarz inequality.
Lemma 1.4.1. Let A be an m x n matriz. If T'(x) = Ax, then
1. ||T|| < oo (Finite operator norm)

2. ||T(@)|| < ||T| ||=|| for all € R™. (Operator Cauchy-Schwarz Inequality)

!'Notice that this value of A\ minimizes the quadratic equation on the left-hand-side.

16



Before we proceed with the proof, notice that the Cauchy-Schwartz inequality is a special

case in which A = v?.

In the general case we can also provide a geometric interpretation. The ratio of the
norms ||T(x)||/||x|| is the amount that the input vector is “stretched” by the linear map T.
Therefore, the operator norm ||7’|| is the maximum amount that a vector can be “stretched”.
Informally, the first part of the lemma states that finite linear maps cannot “stretch” vectors

too much.

Proof. We will show the first property. Let A; be the j row vector of the matrix A. Recall
that by the definition of matrix multiplication, that if z = Az, then z; = A;x (a scalar).

This means that the norm of z is:

m m
oA = D Al
i=1 i=1

Then we can use the Cauchy-Schwarz Inequality:

1T(@)]] = | > Al < ([ D 1Al ]2
i=1 =1

Consider the restriction that ||| = 1, then the expression simplifies to ||T(x)|| < C =
VI TTAl2. The quantity C' < oo because m,n are finite: we know that ||A;]| < oo and
that there is a finite number of finite terms in the sum. This means that the supremum is
bounded by a finite quantity.

To show the second part we use the scalar property of the Euclidean norm: ||az|| = «l|z]],
for all z and for all non-negative o € R (verify this as an exercise).

If « in nonzero, then we can normalize it in order to ensure that it has unit norm, that
isx = ﬁ Then by definition of the operator norm, which is a supremum overall all unit
vectors, ||AZ|| < ||T||. To complete the proof it suffices to multiply either side by ||z|| and

using the scalar property of the Euclidean norm:
||Az|| = [[AZ| || < [|T]] [|lz[|, Ve e R™\{0}
where the first equality holds by rewriting

Ax = AZ ||z||

17



and using the scalar property by taking o = ||x|| and z = AZ .
Finally we need to make sure that the inequality also holds when « is equal to zero. This
does indeed hold because ||A(0)|| = 0 and the right hand side is also zero.
O

Remarks 1: We proved the lemma by only using the fact that the matrix A has finite
dimensions. In the remainder of the course we will impose stronger assumptions on the
matrices (e.g. invertibility, orthogonality, etc.) and it is important to emphasize that these
properties are not necessary for the operator norm to be finite.

Remmark 2: Which linear maps do not have a finite operator norm? Some linear maps
on functions spaces (though not all) instead of the Euclidean space. When the space has an

infinite number of elements the main argument of our proof (finiteness) does not hold.

18



1.5 Continuity

In order to prove continuity of linear maps we will define a metric from the Euclidean norm.

d(z,y) = ||z - yl|

Our objective in this section is to build up on the properties of the operator norm that
we define in the previous section, in order to prove continuity of finite linear maps. The
intuition of this result is as follows. A finite ||7'|| means that each vector in the domain is
not “stretched” too much by the linear map. This means that “small” perturbations in the

domain have “small” perturbations in the range.

Definition 1.5.1. A function T'(x) is continuous at point & € R™, if Ve > 0 there exists
9 > 0 such that if y € R” and d(x,y) < 6, then d(T'(x),T(y)) < €.

We can now show that finite linear maps are continuous. It is worth emphasizing that
this result has minimal assumptions, and does not depend on the specific form of the matrix

A, just the fact that it has finite dimensions.
Theorem 1.5.1. If T(x) = Ax then T is continuous.

Proof. Fixe > 0. Notice that d(T(z),T(y)) = ||Az—Ay|| = ||A(x—y)||. Definew =x—y
and apply the Cauchy-Schwartz inequality in Lemma 1.4.1.

|A( =)l <[IT] [Je -yl <e

Since ||T'|| is finite, then as long as d(x,y) = ||z — y|| < €/||T||, the above inequality holds.
We complete the proof by picking § = ¢/||T|]. O
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1.6 Application: Markov Chains

Consider the following situation. At time 0, there is a population of individuals split between
two states (e.g. two cities), with proportions x1, x5 € [0, 1] that up to one, x; + xo = 1. At
time 1, some individuals decide to remain in each city (p11,p2e, respectively) while others
decide to migrate to the neighboring city (p2, pa1, respectively). The process continues for T
periods. The proportion of the population in each state, z;; for i € {1,2},t € 0,...,T forms
a Markov chain. The term Markov refers to the fact that the state at time ¢t + 1 only
depends on the proportions at ¢ and the transition probabilities, but not periodst—1,t—2,.. ..

See Figure 1.1 for an illustration of this process.

Proportion Initial Final Proportion
in state State State in state

P11X1 t P21X2

P21X1 + D22X>

Figure 1.1: A finite markov chain

Linear algebra can help us answer important questions about Markov chains. What is
the proportion of individuals in each state at time ¢t?7 As T — oo, is there a stationary
population in each state? Under what conditions? If there is a stationary state, does it
depend on the initial distribution? To develop full answers to these questions we will need
to develop more tools throughout the next chapters.

Finite markov chains (i.e. those with a finite number of states) can be represented using

a stochastic matrix.

Definition 1.6.1.  An n xn matrix P is a stochastic matriz if its entries are non-negative

and the sum of the entries in each column adds up to one, P;; > 0,> . P; = 1.

Definition 1.6.2. A n x 1 vector @ is a probability vector if its entries are non-negative
and add up to one, z; > 0,> . x; = 1.

It can be verified from the definition that the columns of a stochastic matrix are proba-

bility vectors. If P is a stochastic matrix and @, is a vector of individuals in each state at
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time ¢, then we can represent the process in Figure 1.1 as a law of motion:
T = Pxy
By recursive substitution we can show that:
x; = Px; | = P(Pxzy 5) = = Plxg

This makes it easier to analyze this type of markov chains because it means that we only
need to understand the properties of the matrix P. We can also show that P! is also a

stochastic matrix.
Lemma 1.6.1. Assume that P is a stochastic matriz, then

1. If the vector has € R"™ is a probability vector, then y = Px is also a probability

vector.
2. P! is a stochastic matrix.

Proof. We will prove the first part. By the definition of matrix multiplication y; = 2?:1 Pijx;.
Since all the entries of the sum are non-negative, then y; > 0. Furthermore, > " vy, =

n n .
>ic1 2oy Pijzj. We can rearrange this sum so that:

D= w) Pj=) ;=1
i=1 j=1 =1 j=1

That shows that y is a probability vector (entries are non-negative and add up to one).
Now we will prove the second part by induction. First we show the result for ¢ = 2. By

the definition of the multiplication of two matrices.

P*=|Pp - Pp,

By the first part of the lemma, since p; is a probability vector then so is Pp;. The columns of
P? are all probability vectors therefore P? is stochastic. Now assume that P! is stochastic.
Using the first part of the lemma P'p; is a probability vector, 1 < j < n. That means
that P'! is also stochastic. This completes the induction argument, showing that P! is a

stochastic matrix. O
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1.7 Properties Appendix: Matrix Transpose

Let A be an m x n matrix, with entries [A;;]. With this notation, define matrix addition as
(A + B);j] :== [A;; + By;] and matrix multiplication as [(AC);;] = [>_/, aucy] for matrices
Bmxn and Cnxk:-

Definition 1.7.1. The transpose of a matrix A is an n x m matrix with entries [A4;;], which

we denote A’.

Definition 1.7.2. A matrix A is said to be symmetric if A = A.

1 5 8 L2
A= , A'=15 6
2 6 0
8 0
Lemma 1.7.1. Let A, B be m x n matrices, C an n x k matriz and \ a scalar.
1. (Involution Property) (A')! = A.
2. (Additive Separability) (A+ B)" = A' + B".
3. (Multiplicative Separability) (AC)" = C*A".
4. (Scalar multiplication) (AA)" = A",
5. (Transpose of scalar) A' = A if m =n = 1.

6.  (Bilinear form) (A+ B)(A+ B) = A'A+ A'B+ B'A+ B'B.

Proof of Properties. .

1. By definition [Aj;] = [Aj;]. Applying the definition again, we get [(A")};] = [A};] =
[Asj]-

2. By definition [(A + B)t]ij = [(A + B)ﬂ] = {Aﬂ + Bﬂ] = [AZ + ij]

3. By definition [AC];; := [}/ aqcy], where ¢; are the columns of ¢. Then [(AC)};] =
[(AC) ;3] = D22y aicul = D22, CuAy] = [(CTAY)).

5. f m=n= 1, [Alil] = [All]-
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6. First apply additive separability, (A + B)" = A' + B'. Then use multiplicative separa-
bility of multiplication (A* + B")(A + B) = A"(A+ B) + B*(A+ B) = A'A+ A'B +
B'A+ B'B.
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1.8 Exercises

1. Suppose that T'(x) = Ax and that F(y) = By, with A,,x, and Bgxm.

(a) Show that G = F(T'(x)) is also a linear map.
(b) Show that ||G|| < ||F|| ||T]|- Is the composite of two linear maps continuous?

(c) Assume that P is a square matrix. Use part (b) to show that for any non-negative
integer ¢, || P[] < [|P]['".

(d) Show that if @ is a probability vector, then ||x|| > a for some a > 0.

(e) If P is a stochastic matrix, could it be ||P|| < 1?7 What would this imply for our

migration example if it were true?

2. In this section you will expand some of the details of the proof of the Cauchy-Schwarz
inequality. Let A € R, v,z € R". We know that if z = v — Az, ||z]| > 0, then

v'iv — 2 'z + Nztz > 0 (1.2)
(a) Show that the condition in Equation 1.2 is equivalent to:
Aian {vlv — 2 'z + Vxlx } >0, Vv, zcR”
G n

(b) Consider the case when ||z|| > 0. Use the fact that the function is quadratic in A

to show that a minimum exists and that is

t

v'x ,

—= = argmin{ v'v — 2\v'z + \2z'z }
¢

Trxr AER™

(c) Show that if v = @, then Cauchy-Schwarz attains equality.
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Chapter 2
Image and Kernel

Let A be an m x n matrix and let T'(x) = Ax. There are two main objects that we are

interested in concerning linear maps.'
Im(A) :={zeR":Jx € R" s.t. z = Ax}

Ker(A) :={x € R": Ax = 0,1}

which we denote the image and kernel of the linear map, respectively. Notice that the
image is a subset of the range of the function, whereas the kernel is a subset of its domain.
Moreover, remember that m is not necessarily equal to n. Therefore, they typically reside
in different spaces. However, we will show that they are related in other ways.

Other equivalent terms are used to describe these sets. The kernel is the set of solutions
to a homogenous system of equations (one where the right hand size is the zero vector).

The image of the linear map is also sometimes called the span of the columns of A.

2.1 Simple example

The image addresses what information is contained in A, whereas the kernel can help us

determine whether its columns contain redundant or unique information. For now we will

Tt is important to note that the image and kernel are defined with respect to the function T and not the
matrix itself. However, because finite linear maps are uniquely represented by matrices by Lemma 1.3.2, we
will define I'm(A) and Ker(A) rather than Im(T) and Ker(T) in order to streamline the notation.
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focus on the image because it is a little easier to analyze. Consider the following matrices

b
Il
o O =
o O =
b
Il

In econometrics, A could represent a data matrix with individuals in each row and variables
in each column. We say that the two columns in A are colinear because one can be expressed
as a linear combination of the other one. The usage in econometrics is identical to the one

in linear algebra. We can verify that I'm(A) = Im(A), because

T1+ X2 Y1
Ax = 0 , Ay =
0

where € R? and y € R!. The mapping defined by each matrix has a different domain but
their image is the same, a line in R? along the first coordinate. The key idea is that since the
two columns are identical we can drop one of them and produce a linear map that contains
the same information about the image. In the econometrics example, it means that we do
not need to include the same variable twice.

On the other hand, the matrices A and A have a different kernel.

Ker(A) = { [_a ] ta € R}, Ker(A) = {0}

The kernel always includes the zero vector because A,,x,0,x1 = 0,,x1 regardless of A. As
Ker(A) shows, when there is no redundant information, the kernel only contains that element
(we call this the trivial kernel). However, when the vectors are colinear the kernel is non-

trivial. As a matter of fact, if the kernel is not trivial it has infinite solutions, as shown in

Ker(A).
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2.2 Full rank matrices

As with other types of functions, linear maps have a unique solution (if it exists) when they
are one-to-one (injective). For finite-dimensional linear maps, we say that the matrix is full

rank.
Definition 2.2.1. A matrix A,,«, is said to be full rank if T" = Ax is one-to-one.

It is important to observe that not all full rank matrices are square (see example in the
previous section). One of the special things about a linear map is that many of its properties

can be obtained from its kernel.

Lemma 2.2.1.  The linear map T : R™ — Im(A) is injective if and only if the kernel is
trivial, Ker(A) = {Onx1}-

Proof. ( = ) Suppose that T is one-to-one, then Az = 0 has a unique solution, if it exists.
We know 0,, is a solution since A0, = 0,,, hence it is the only solution. This means that
the kernel exactly contains the zero vector.

( <= ) We will show this by contradiction. Suppose that Ker(A) = {0} and that 7" is not
one-to-one. Then there exists & # y such that Az = Ay, which implies that A(x —y) = 0.
But this implies that (x — y) # 0 belongs to the kernel, which is a contradiction. O

Lemma 2.2.1 gives a characterization of injective linear maps in terms of the kernel. A
kernel that contains a single element, the zero vector 0 € R" is sometimes called a trivial
kernel. This simplifies our task of identifying injective functions considerably. At this stage
we are focusing on understanding the high-level properties of the kernel because we are
interested in proving existence and constructive results. Later in the course we will discuss

practical (numeric) ways to test whether the kernel is trivial.
Corollary 2.2.1. The following implications follow from Lemma 2.2.1
1. If Ker(A) = {0,x1}, then all its columns are non-zero vectors.

2. If Ker(A) = {0,x1} and v € R™ is not in the image of A, then Ker(ay,...,a,,v) =

{0(n+1)x1}~

3. Ker(A) = {0,x1} if and only if each column vector a; is non-zero and cannot be
expressed as a linear combination of the other vectors, {ai,...,a;_1,aj41,...,0,},
I<j<n

The Corollary proves equivalent characterizations of trivial kernels.
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Proof. We can also prove the following implications of the theorem:

1. Suppose that Ker(A) = {0,x1}. Suppose by contradiction that some columns are
zero, and WLOG, say, that a; is a zero vector. Then & = («,0,...,0) is a solution
to Az = 0, for any a € R. That means that K(A) # {0} because it contains more

elements (at least ), which is a contradiction.

2. Suppose that Ker(A) = {0,x1}, v € R™is not in the image of A, and Ker(ay,...,a,,v) #
{0(t1)x1}. Then there exists 31, ..., By, B, not all zero, such that.

0m><1 = Blal + ...+ ﬁn&n + ﬁvv

The case 3, = 0 and some non-zero (f, . .., 3,) is not possible because then Ker(A) #

{0}. The case (3, # 0 is also not possible because then v = — (31 /5,)a1—...— (8n/Bv)an
and this contradicts the fact that v ¢ Im(A). Since this situation contradicts both
premises, it follows that Ker(ai,...,an,v) = {Om41)x1}-

3. (=) Suppose that Ker(A) = {0} and by the first part of the lemma, all the column
vectors of A have to be non-zero. Suppose that some column can be expressed as a

linear combination of the other vectors, WLOG, say, a;:

a; = Poag + Bsaz + ... + Bnay.

At least one f3;, 2 < i < n is non-zero, otherwise a; would zero (which is ruled out by

the first part of the lemma). We can rearrange this equation as

Om><1 = —a1 + B2a2 + 63@3 + ...+ Bnan

In matrix form that means that Az = 0, where x = (=1, 5, 33, ...,5,) and at least
one f; # 0. However, this means that & € Ker(A) and therefore Ker(A) # {0,x1}, a
contradiction.

( <) Construct the matrix A sequentially by adding columns. Since a; is non-zero,
Ay = aq has a trivial kernel. Add each column sequentially. By assumption column
arpy1 cannot be expressed as a linear combination of the first £ columns. Therefore
ag+1 ¢ Im(aq,...,a;) and we can apply the second part of the lemma. We can apply
this argument sequentially, ensuring that the kernel is trivial at each stage until we

have added all the columns.
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2.2.1 Surjective Maps

However, an injective function does not necessarily have a solution to the system Ax = b
for b € R™. The function is guaranteed a solution if it is both injective and Im(A) = R™
(it is surjective over the Euclidean space). Otherwise, it only has a solution if b € Im(A).
We prove an important lemma that allows us to assess whether a linear map is surjective or

not.

Lemma 2.2.2. Suppose that A,,xn is full rank and that we have a matric W,,«x, whose

columns, wy, ..., wg are contained in Im(A). It follows that,
1. If K =n and W is full rank, then Im(W) = Im(A).

2. If K > n, then W cannot be full rank.

The lemma states that all funk rank matrices that span the same space (have the same
image) necessarily have the same dimensions. If a full rank matrix spans a space we say that
the column vectors are a basis for the space. The basis for a space is not generally unique.
For example, scaling one of the columns leads to the same image. The rank of a space is
the number of columns of any basis that spans it. We use the convention that rank(A) =0
if A is the zero matrix.

The second part of the lemma states that the number of columns is always greater than
or equal to the rank of the matrix. If a matrix has more columns than its rank then it is
necessarily rank deficient (not injective). This is a formal proof that a linear system with
more unknown than equations cannot have a unique solution, if it exists.

The proof of the lemma is interesting because it uses a recursive substitution argu-
ment. It starts of with the matrix A and substitutes each vector sequentially until we have
have shown that the image spanned by both basis is the same. At each step the image is
the same. We will use this type of argument in subsequent proofs because it useful to prove

existence of bases.

Proof of Lemma 2.2.2. Assume W is full rank. Let a4, ..., a, be the columns of A. Since

wy belongs to the image of A,
wy = frag + -+ + Buay

There must exist some 1 < i < n such that 3; # 0, otherwise w; = 0 contradicting that W

is full rank. Assume without loss of generality, say it is ;. Hence

1 ﬁ2 571

) = — W) — Ay — =+ — —Qp.
A

A A
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Construct a new matrix that substitutes a; with w;. This implies that the image of the

new matrix is equal to the image of A, that is Im{wy,aq, - ,a,} = Im(A), because any
combination of the original vectors can be written indirectly in terms of {wy,ag, - ,an}.
Since wy € Im(A), it is a linear combination of wy, as, - , ay:

wy = 1wy + Byaz + -+ + Bran.

Again, there must exist some 2 < i < n such that 3 # 0 (using the fact that W is assumed

full rank). Without loss of generality, assume it is aq, then

as = 1w Mo B‘%a ;La
2 = orWo — — Wy — A3 — - — oy
B3 2 2 5
This implies Im{wy,ws,as, -+ ,a,} = Im(A). Continuing in this fashion, we can show

Im{wy, - ,w,} = Im(A). This proves the first part of the lemma.
For the second part, if K > n and assume W is full rank. Consider a submatrix of W

with its first n columns W = (wy, ws, ..., w,). From part one we know Im(W) = Im(A). By

assumption, w,+1 € Im(A) = Im(W) and hence it is a linear combination of wy, - -, w,,
which contradicts the assumption that Ker(W) = {0} (i.e. full rank). O

Example (Injective but not surjective linear maps).

=l

The linear map T(x) = Az,x € R is injective but it is not subjective on R? because

A:

y ¢ Im(A). As an exercise try to show that Lemma 2.2.2 implies that an injective map
cannot be surjective (Im(A) = R™) if A is a non-square full rank matrix. (Hint: Assume

that the columns of W = I,,,«,, are contained in I'm(A)).

Example (Square matrix that is not injective).

el =)

We can verify that Ax; = Axs, which means that the function T'(x) = Az is not injective.

A:
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2.2.2 Invertible Matrices

Lemma 2.2.3. If W is a full rank n x n matriz then there exists a unique matriz W= such
that W='W = I,,.

Proof. This proof has two steps:

1. Show that the linear map T(x) = Wz is injective and surjective. That means that we

can define an inverse function T—1 : R™ — R™ for every element in R™.

The fact that W is full rank guarantees that the function is injective. Now we will
show that full rank square matrix are also surjective. Consider the identity matrix
Lixn. We know that Im(l,x,) = R™ because every for every vector x € R" can be
written as © = I,x,@. Clearly every column in W belongs to Im(I,«,). We can apply
Lemma 2.2.2 to show that Im(W) = R".

2. Show that the function T~' is a finite linear map, because then we can apply the
representation theorem in Lemma 1.3.2 to show that there exists a matriz W= such
that T~ (y) = Wly.

Choose two arbitrary n x 1 vectors y,,y, € R". Since T~ ! is injective and surjective,
there exist unique vectors &1, x5 € R" such that y, = Wx; and y, = Wax,. It follows
that ay, + Sy, = aWx, + fWxy = W(ax, + fxs) for all o, 5 € R™. This implies
that T (ay, + fy,) = ax; + Bz = T (y,) + BT *(y,) (it is a linear map over
a finite domain and range). To complete the proof we use Lemma 1.3.2 to show that

there exists a unique matrix, denoted by W~!, such that T-(y) = W ly.
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2.3 Rank deficient matrices

Lemma 2.3.1. Let A be a m x n matriz such that Ker(A) # {0}. Then (i) there exists
an n X k full rank matriz, Q, such that Ker(A) = Im(Q). (i) All the matrices Q with this

property have the same dimensions.

Lemma 2.3.1 states the kernel of rank deficient (not full rank) matrices can be rep-
resented by a matrix. The proof follows a basis extension argument. Start the matrix
by choosing a non-zero vector in the kernel. Then sequentially add independent vectors (if
they exist). The proof doesn’t provide an algorithm for finding such vectors, although such
algorithms do exist. The essential part of the proof is to show that there cannot be more
than n independent vectors in the kernel, because Ker(A) C R"™. The second part of the
lemma says that every basis for the kernel has the same number of columns, which we call
dim(Ker(A)).

Proof. Since Ker(A) # {0} there exists a non-zero vector such that w; € Ker(A). Con-
struct a candidate matrix ; = w;. First we show that Im(Q;) C Ker(A). If & = aw;,a € R
then & € Ker(A) because Ax = A(aw;) = a(Aw;) = 0. Now suppose that we have con-
structed a full rank matrix € with k& column vectors whose image is contained in Ker(A),
that is:

Im(Qy) C Ker(A), Ker(Qg) = {0kx1}

If Im(2) = Ker(A) then we are done. Otherwise, choose wy,1 € Ker(A) such that wy,q ¢
Im(Q%). By Lemma 2.2.1 then the matrix Qg1 = {Q,wr11} (appending a column vector
on the right) also has a trivial kernel (is full rank). We also need to show that Im(€41) C
Ker(A). Let © = (x1.4, 7p41) € R¥, where @1, = (71,...,21). Since Im(Q) C Ker(A), it
follows that AQy 1@ = AQrx1.x + Awgr12k41 = 04+ 0 = 0. Therefore, Im(Q41) C Ker(A).

This process needs to stop eventually (i.e. Im(Q) = Ker(A) for some k). Suppose that
it doesn’t and that we are at a stage where k > n and Q is full rank. Since Im(£;) C R* =
Im(I,) then by Lemma 2.2.2 if k > n, € cannot be full rank, a contradiction. Hence, the
process needs to stop for some k < n.

Now suppose that we choose two full rank matrices 1, Qy such that Im(Q;) = Im(s) =
Ker(A). They must have the same number of rows because they span the same space. Now,
WLOG assume that €27 has strictly more columns than §25. Since the columns of €2; belong
to Im(€z) then Lemma 2.2.2 implies that €y is not full rank, a contradiction. Therefore,

both matrices must have the same number of columns.

]
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2.4 Application: Linear Regression

A researcher has access to a database with information about n individuals. There is a
vector of outcomes Y € R”, each entry represents the outcomes for different individuals.
There is a matrix with £ explanatory variables X, « called the design matrix, with n > &
(there are more observations than variables). The relationship between the outcome and the

explanatory variables is given by:

Y.« = ankﬁkxl + €nx1

where €, is a vector of unexplained error terms and S € R¥ is a vector of coefficients.
The researcher is interested in estimating the coefficient using the observed data to recover
some effect of interest. The researcher has established that he will use the least-square-
error criterion to compute the estimator (more details in later chapters) which leads to the

following first-order condition.

(X'X)3=X'Y (2.1)

The k x k square matrix X'X is called the gram matrix. By Lemma 2.2.3 the function
T(8) = (X'X)p is injective and surjective as long as the gram matrix is full rank. This

guarantees that the estimator exists and is unique.

Lemma 2.4.1. Let X be ann x k matriz. Then (X'X) is full rank if and only if X is full

rank.

Proof. We will show that Ker(X'X) = Ker(X). Consequently, by Lemma 2.2.1, either
both matrices are full rank or neither of them is.

(<= ) Suppose that 3 € Ker(X), then X8 = 0,,»;. That means that (X'X)8 = Opx1
and that 8 € Ker(X'X).

( = ) Suppose that 3 € Ker(X'X) then X'Xj3 = 0,,,;. This also means that
BX'XB = 011 = (XB)(XB) = ||XB|[>. We know that a norm is equal to zero if and
only if the vector is zero. Therefore X5 = 0,5, and € Ker(X).

O

Lemma 2.4.1 states the gram matrix is full rank if and only if the design matrix is full
rank. The proof is interesting because it illustrates that two matrices can have the same
kernel even if they have a different number of rows (because the kernel is contained in the
domain, which depends only on the number of columns). Empirically the result is interesting
because it allows the researcher to asses the rank condition of X rather than the matrix X‘X

which can be a more complicated object.

33



Lemma 2.4.2. Let X be an n X k matriz with non-zero entries. (i) If X is not full rank
then we can construct a full rank matriz X* by dropping select columns of X, such that
Im(X) = Im(X™). (it) Suppose that A is a full rank matriz such that Im(A) = Im(X).

Then A has the same number of columns as X ™.

Proof. By Lemma 2.2.2 if X is not full rank, then at least one of its columns is zero and /or
can be expressed as a nonlinear combination of the others. Assume WLOG that it is the last
column. Suppose that we construct X™* by dropping that column. Then x; = X ™), where
@y, is the last column and ) is a (k — 1) x 1 vector. We show that Im(X™) = Im(X). By
definition, Im(X™) C Im(X) because there are fewer spanning vectors (we can always set
the last coefficient to zero). The difficult part is showing that Im(X) C I'm(X™). Suppose
that z € Im(X), then there exists a 8 = (B1.(4-1), Fx) € R* such that z = X 3. We can
rewrite this as X3 = X" 1.4—1) + x5 and substitute in x; = X ™),

X" Brh—1) + X B = X (Bre—1) + ¥B) € Im(XT)

This proves that Im(X™) = I'm(X). If the matrix X is full rank then we are done. If it
is not we can repeat the process all over again. The process stops eventually because X is
non-zero, meaning that it has at least one non-zero column vector. That means that it is
indeed feasible to obtain a full rank matrix by dropping columns (in the extreme case we are

just left with one vector). The second part directly follows from Lemma 2.2.2.

]
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2.5 Properties Appendix: Block-Partitioned Matrices

Suppose that X is an m x n matrix. Then the matrix can be represented in block partition

form.
X o Am1><n1 Bm1><n2

Cmanl Dmg XNy

where mi+msy = m and ny +ny = n. The matrices A, B, C, D are submatrices of the column
X. In general, we could have more partitions of the matrix or less (only A and C, or only A
and B). The best way to partition a matrix depends on what the researcher wants to prove

about that matrix.

c-[i2d = ashd m-f e fed] 0[]

4 5 6
X, X
o | Az Z-=
X3 Xy
Notice that the transpose changes the position of the blocks.

Xy Xi

For example:
AR,
Zsy Zy

Transpose

Matrix Multiplication Suppose that X € R™ x R” and Z € R" x R*. Furthermore
suppose that X; € R™ x R™ and Z; € R™ x R* (matrices are conformable). Then we can

defined block partitioned multiplication.

X2+ XoZs XiZoy+ XoZy
XaZi1+ XyZds X3Zo+ XyZy

X7Z =

Matrix Addition Suppose that X, Z € R™ x R”. Furthermore suppose that X; &€
R™ x R™ and Z; € R™ x R™ (matrices are conformable). Then we can defined block

partitioned addition.

X1+ 21 Xo+ 2y
X3+ 2y X4+ 24

X7 =
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2.6 Exercises

1. Suppose that X is a non-zero m x n rank deficient matrix. Suppose that we partition
its columns X = [X7, X5] in such a way that Im(X;) = Im(X) and X; is full rank.
The block matrices have ny,ny columns, respectively. This is equivalent to dropping

redundant variables in a linear regression.

(a) Show that Equation 2.1 can be written in block-partitioned form as:

XXy Xix] o Xy
XX, XLX, Xty
(b) Suppose that §; = (X!X;)"'(X!Y). Construct a vector §* = b ] Show
no X1

that 5* is a solution to Equation 2.1 if and only if XX, 3 = XLV

(c) Verify that the columns of X, belong in Im(X;). Use this fact to show that
XX, 6, = X1V

(d) Consider the data matrix,

~
I
e e
o O O = =
e = =)
)~<
I
T = W N =

Construct X*X and X'Y. Now partition the matrix into X, X, and compute

B*. Verify that the results that you proved above are true for the following cases:

(i) Construct X; using columns 1 and 2.

(ii) Construct X; using columns 1 and 3.

(e) Is 5* the same in both exercises? How can we interpret the result?
You can use the fact that the inverse of a 2 x 2 matrix is given by:

air a2 Al — 1 Q22  —a12
21 A22 a11Q22 — A12021 | —ag;  G11

A:
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Chapter 3
Orthogonality

In the previous chapter we studied the (full) rank of matrices, which determines whether
linear systems of equations have unique solutions, if they exist. Unfortunately, there are
many practical cases where exact solutions do not exist because the matrix is not surjective
over the Euclidean space. In this section, we will explore a novel property, orthogonality,
which will address the optimality of approximate solutions. The main takeaway of this
chapter is that linear systems of equations always have an “approximate” solution which is
unique if and only if the matrix is full rank. Therefore, the rank of the matrix continues to
play a central (and coherent) role in establishing uniqueness, even in this novel setting.
The second takeaway of this chapter is that the residuals of approximate solutions can
be characterized in terms of projection matrices, which are square matrices with well-
defined properties. In the application we combine projection matrices with the concept of

block-partitioning in order to gain new insights about multivariate linear regressions.

Our analysis starts with the definition of orthogonality.

Definition 3.0.1. A pair of vectors x,y € R" is orthogonal (z L y) if 'y = 0. If in

addition, they have unit norm, ||z|| = ||y|| = 1, then they are orthonormal.

In R? two vectors are orthogonal to each other if they are perpendicular to each other.

Orthogonality is the concept that generalizes this notion to higher dimensions.
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3.1 Vector Orthogonalization

In this section we address an issue of “orthogonalizing” a vector: transforming it so that it is
orthogonal to every vector in an auxiliary matrix. We deliberately use the same terminology
as the linear regression example in Section 2.4. We focus on full rank matrices first because
the results are constructive and will help us acquire intuition for proving similar existence

results in the general case.

Lemma 3.1.1. (Vector Orthogonalization) Let X be an m x n full rank matriz and
let y € R™. Define a vector of coefficients B* = (X' X)"' X'y € R" and define the residual
e=y— Xp*€R™. Then

.Z. EtX :OIXN‘

2. Im(X,e)=1Im(X,y).

The vector ¢ is sometimes known as the residual, the difference between the original
vector y and a vector X 8%, the projection onto the image of X. Notice that the vector
[£* is the solution to the system of equations for a linear regression in Section 2.4. Part 1 of
the lemma states that the resulting vector € is pairwise orthogonal to all the columns of A.
Part 2 states that if a matrix has columns (X, y) then we can substitute the last column
with an “orthogonalized” residual and still span the same space. Intuitively, this says there
is no loss of information in “projecting out” its component in X . This will be important for

our theoretical analyses.

Proof. Since X is full rank, by Lemmas 2.4.1 and 2.2.3 X'X is invertible. Therefore *

exists and is well-defined.

(i) By definition !X = (y' — 8 X")X. By definition of 8* = (X'X) "' X'y we can
rewrite this as y*(1 — X (XX )" ! X") X. By expanding out the terms we can show that this
is equal to y'(X — X) = 01xp,.

(ii) Since e = —X * + y it follows that e € Im(X,y). Similarly, since y = X3* + €

it follows that y € Im(X,e). That means that any vector linear combination of X and y

can be expressed indirectly in terms of X and €, and vice versa. Therefore, Im(X,e) =
Im(X,y).

O
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3.1.1 Optimality of Approximate Solutions

In cases where the system of equations y = X does not have a solution we can define an
optimality criterion based on the squared norm of the residual vector (also known as the

residual sum of squares or SSR).
SSR(B) = [ly — X"

We will prove that a unique minimizer exists when X is full rank. We can also show that
if X is not full rank a (necessarily non-unique) minimizer exists but in order to do so, we
need results from the next sections. We start off with the case of full rank matrices because
they can help us develop the intuition of what are the key elements that we need for the
general case. Furthermore, the full rank case is of interest in its own right for econometric
applications.

Define ¢y = X 3* as our candidate prediction vector using the coefficients 8* = (X' X )1 X'y
that we outlined in the previous section. Then we can decompose vector y into two compo-
nents that are orthogonal: (i) one that is linearly spanned (modeled) by the regressors X

and (ii) the other that cannot be linearly modeled by X, a residual € = y — 9.

y= 9y + (y-9)
~—~ ——
Projection  Orthogonal Projection

Lemma 3.1.2. Let X be an m x n full rank matriz and let y € R™. Define € and 3* as in
Lemma 5.1.1. Then

1. SSR(B) =ele + (B — BIX'X (5" — ).

2. [* is the unique minimizer of SSR(S).
Proof. We can rewrite the y — X by adding and subtracting X /*. This leads to an
expression, (y — X %)+ (X * — X ). The first term does not depend on 3 (the object over
which we want to minimize), which we called €. We can further group the matrix in the

second term. Then we can rewrite the expression as y — X3 =€ — X (8* — 3). We can use

this to rewrite an interpretable expression for SRR([3).
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SSR(B) = |le + X (8" ~ )| Plug in y — X3

=(e+X(B*—B))(e+ X (B - 1)) Rewriting using transpose
=e'e+e'X(" = p)+ (8" - B)'X'e+ (8" - B)'X'X(8" ~ B) Expanding
=e'e — 26" X (B — B) + (B* - B! X' X (B* — B3) Grouping terms
=e'e + (B* - B)'X'X(B* - B) Applying Lemma 3.1.1

Notice that €' X (5* — ) is a scalar. Therefore it is equal to its transpose, using Lemma
1.7.1. Therefore, from lines 3 to 4 we use the fact that e! X (8* — ) = (8* — 3)! X'e. From
lines 4 to 5 we apply the result in Lemma 3.1.1 stating that e/ X = 01,,.

The term e’e is an error component that does not depend on the choice of 3. It captures
the lack of fit of the model overall, even if we choose an optimal approximate solution. The

only terms that matters for the optimization is the second term, which can be rewritten as:

(8" = B) XTX(B" = B) = (X (8" - B)) (X (8"~ B))
= [IX (8" =B

The norm || X (8* — B)]|? is equal to zero if and only if X (8* — ) = 0,,x1. Since X is full
rank, there is a unique solution 5 = §*. Therefore, 5* is the unique minimize of SSR(}).
N
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3.2 Orthogonal Spaces

In linear algebra it is convenient to think of sets that have a particular property. Previously
we analyzed two important sets, the image and the kernel. Now we will analyze a third

important object called the orthogonal set.
Orthog(A) = Im(A)*t :={y e R™ :y'2 =0, Vz € Im(A)}

Lemma 3.2.1. Let A be an m x n matriz, then Im(A) N Orthog(A) = {0,,x1}-

Proof. Suppose that & € R™ is non-zero. Then x'x > 0. If & € Orthog(A) then x'a = 0
for all @ € Im(A). Furthermore, if @ € Im(A) then x'x = 0, which is a contradiction.

To complete the proof we need to verify that 0,,; is indeed part of the intersection. The
vector 0 € Im(A) because A0, %1 = 0,,%1. It is also part of Orthog(A) because 0!, .,y = 0

for any y € R™ including those contained in I'm(A).
[
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3.3 Projection Matrices

Projection matrices arise often in econometrics and in other linear systems with approximate
solutions. They allow us to decompose a vector in the Euclidean space into a component
that is projected onto the image of a matrix and a component that belongs to its orthogonal
complement. Lemma 3.3.1 proves a characterization of projection matrices that is easier to

verify in practice, which we will use in subsequent proofs.

Definition 3.3.1. Let A be an m x n matrix. Then the matrix P is a projection matrix
onto I'm(A) if for all z € R™,

Pz e Im(A) CR™, (I—P)z e Orthog(A) CR™

Definition 3.3.2. Let A be an m x m matrix.
(a)  The matrix A is idempotent if AA = A.
(b)  The matrix A is symmetric if A* = A.

Lemma 3.3.1. Let A be an m xn matriz and let P be an m x m matriz. If Im(P) = Im(A)

then P is a projection matrix onto A if and only if P is idempotent and symmetric.

Proof. ( = ) Suppose that P is a projection matrix. Then for all z € R™, Pz € Im(A) and
(I — P)z € Orthog(A). By definition of the orthogonal set we have z'(I — P)"Pz regardless
of the choice of input vectors. That means that (I—P)'P = 0,,x,,. Rearranging the equation
we get that P = P'P. The matrix is symmetric because P' = (P'P)! = P'P = P. Using

the fact that it is symmetric, we can show that it is also idempotent because P = P'P = PP.

( < ) Now suppose that Im(P) = Im(A), together with the condition that P is
idempotent and symmetric. Since Im(P) = Im(A), then for all z € R™, Pz € Im(A).
Furthermore, for every a € I'm(A) there exists a € R™ such that Px = a. Let z € R™,
then a’(I — P)z = &' P*(I — P)z = 0 since P*(1 — P) = O,,xy,. This follows directly from
idempotency and symmetry: P! — PP = P — PP = P — P = 0,,x,». That means that
(I — P)z is orthogonal to every element a € Im(A), and therefore (I — P)z € Orthog(A).

O
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3.3.1 Computation of Full Rank Matrices

Projection matrices can be computed directly for full rank matrices.

Lemma 3.3.2. If A is an m x n full rank matriz then P = A(A'A)~'A is a projection

matriz onto Im(A).

Proof. We will verify that P satisfies the conditions of 3.3.1.

First we show that the matrix is symmetric and idempotent. Using Lemma 3.5.1,
((ATA)™1)t = ((A'A)")~1. We also use Lemma 1.7.1 to show that (A*A)" = A'(A")! = A'A.
Therefore P! = A(A'A)"1A! = P, and therefore our candidate matrix is symmetric. It is
also idempotent because PP = A(A'A)"tA*A(A*A)~LA! which is equal to A(A*A)"tA' = P
by canceling some of the terms.

Second, we show that Im(P) = Im(A).

(i) Im(P) C Im(A): Let € R™. Therefore Px = Az, where z = (A'A)" 1A'z € R, is

contained in Im(A).

(ii) Im(A) C Im(P): Suppose that z € Im(A) C R™, then there exists a & € R™ such
that Ax = z. Then

Pz = A(A'A) 1A'z (Substituting definition of P)
= A(A"A) A Ax (Since z € Im(A))
= Ax (Cancelling out terms)
=z (Plugging-in definition of z)

That means that z € Im(P). Therefore, Im(A) C Im(P).

To conclude the proof we apply Lemma 3.3.1 to show that our candidate matrix P is a

projection matrix onto A.
m

Proof. Here is a more basic proof using the definition for a projection matrix. We will verify
two things: Vz € R™, (i) Pz € Im(A), (ii) (I — P)z € Orthog(A).
(i) Plugging in the expression, we have

Pz = A(A'A)tA'z = Aw,

where w := (A'A)"'A’z, and hence Pz € Im(A).
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(ii) Now we want to show (I — P)z € Orthog(A). Consider an arbitrary element in
Im(A), Az. We have

(I — P)2) (Azx) = 2'(I — P)Az = 2" (A — A(A'A) 1A' A)x = 0.

Combining (i) and (ii), we have shown that P = A(A'A)"'A! is indeed a projection
matrix onto Im(A). O
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3.3.2 Computation of Rank Deficient Matrices

If the matrix A is not full rank we cannot use the formula in Lemma 3.3.2 directly. Fortu-

nately, we can formulate a more general theorem with minor modifications.
Theorem 3.3.1. Let A be an m X n matriz.
(a) If A is the zero matriz, P = Opxm 5 a projection matriz onto Im(A).

(b) If A is a non-zero matriz, then there exists an m X k full rank matriz B such that
Im(B) = Im(A). Furthermore, for any B with this property, P = B(B'B)™'B' is a

projection matriz onto Im(A).

The second part of Theorem 3.3.1 is particularly interesting because it says that we can
construct projection matrices in a simple way from rank deficient matrices. It suffices to
construct a full rank matrix that spans the same space. One simple alternative is to drop

certain columns that are linear combinations of the others.

Proof. (a) If A is the zero matrix, then Im(A) = {0,,x1}. If P = 0,,x, then it is (i)
Symmetric, P' = Op5 = P, (ii) Idempotent, PP = 0 = P, and (iii) Im(P) = {0} =
Im(A). Therefore, using Lemma 3.3.1 we show that P is a projection matrix unto
Im(A).

(b) If A is a non-zero matrix, then by Lemma 2.4.2 there exists a full rank matrix B such
that Im(B) = Im(A). The intuition is that we can always drop certain columns to make

a matrix full rank and still span the same space.

Now choose an arbitrary B that satisfies this property. Using Lemma 3.3.2, P is a
projection matrix onto Im(B) with the property that Pz € Im(B) and (I — P)z €
Orthog(B). We know that Im(B) = Im(A). To complete the proof we just need to
show that Orthog(B) = Orthog(A). If w € Orthog(B) C R™ then for any b € Im(B)
we have w'b = 0. Since Im(B) = Im(A) then w € Orthog(A). We can use a similar
argument to show that if w € Orthog(A) then it also belongs in Orthog(B). Therefore,
P is a projection matrix onto Im(A).

O
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3.3.3 Uniqueness of Projection Matrices

Lemma 3.3.3. Let A be an m X n matriz.

(a) For each & € R™ there exist unique vectors a,b € R™ such that (i) x = a + b. (ii)
a € Im(A) and b € Orthog(A).

(b) If P is a projection matriz onto Im(A) then it is the unique.

Proof. (a) First we prove that such vectors exist. Define P as in Theorem 3.3.1. Then for
x € R™ define a = Pz € Im(A) and b = (I — P)x € Orthog(A). We can verify that
a+b=Px+ (I — P)x = x. This shows that such vectors exits.

To prove uniqueness, assume that there exist alternative vectors a’,b’ with the same
properties. Then £ = a + b = a’ +b". We can rewrite this as a — a’ = b’ — b. Since
a,a’ € Im(A) the left-hand side belongs in Im(A). Since, b, b’ € Orthog(A) the right-
hand side belongs in Orthog(A). However, by Lemma 3.2.1, Im(A) N Orthog(A) = {0}.
That means that a = a’ and b =b'.

(b) Suppose that there exist two matrices P, P’ such that for all x € R™, then Px, P'x €
Im(A) and (I — P)x,(I — P')x € Orthog(A). Then by the first part of the lemma
Px = P'z and (I — P)x = (I — P')x. Since x is arbitrary, then P = P’. To prove this
set & = e; (an elementary basis vector) and use the fact that Pe; = p; = pj; = P'e; for
j €{1,...,m}, where p;, p} are the j™ columns of P, P’, respectively.

0
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3.3.4 Optimality and Non-Unique Approximate Solutions

Corollary 3.3.1. Let X be an m x n matriz. The residual sum of squares SSR(f) always

has a minimizer. It is unique if and only if X s full rank.

Proof. We can rewrite the problem as:

min — XB|I?= min — z||?
1 |y A Ze]m(x)\ly |

Then we can use Lemma 3.3.3 to rewrite decompose y into its projections, a € I'm(X) and

b € Orthog(X) such that y = a + b. We can expand the equation as:

ly = 2[]* = [[b+ (a - 2)|*
=b'b+2b'(a—2) + (a—2)(a—2)
=bb+ (a—2)(a—2)
=b'b+ ||la — z|?

Therefore the minimizer is z = a. The system a = X has a unique solution if and only if

X is full rank.
O
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3.4 Application: Detrending Data

A researcher has access to a database with information about a series of an economic variable
over T time periods. There is a vector of outcomes Y € R”, with outcomes for different
time periods. There are two sets of regressors: (i) A T X k; matrix X; which contain the
main variables an interest and (ii) a 7" x ko of control variables. For example, the control
matrix could include a single variable with a trend Xy = ¢, where ¢t € {1,...,t} where t is
the time period of each observation.! To ensure that our results have unique solutions, we
assume that the joint design matrix X = [X7, Xy is full rank.

The researcher is debating between different regression specifications, which both use
the least-squares optimality criterion analyzed in Lemma 3.1.2. We use B,@/;l and @/AJY to
denote the solution to the optimality criterion and non-hat symbols to denote the “generating
model”. We are only interested in these solutions, and just provide the generating model for

context.

Example 1 (Additional Trend Regressor). A regression with both the main variables and

the controls, with associated parameters [ = b

] where 1 € R* and 3, € R,

2
Y = X6+ Xofh+e — (X'X)3=X'Y (3.1)

Example 2 (Detrended Regression). Two-step procedure:

1. First detrend the regressors and the outcome by running two auxiliary regressions
(i) X1 on Xy and (i) Y on X,. Let 11,y € R*? be vectors that solve,

X1:X2?/)1+’U,1 — (XEXQ)T/;l:XgXl

Y = Xoty +uy = (X§X2)¢Y:X§Y

Compute the detrended variables (residuals) (i) Main Regressors: Uy = X1 — Xty
and (i) Outcome: Uy =Y — X1y .

2. Run a second regression using the detrended variables:

A A N At A~ At o~
Uy = Ulﬁl +e - (UlUl)ﬁl = U1UY (32)

IThe trend is just an example to give economic context, for our algebra results the matrix X, is unre-
stricted. Another meaningful example is the “fixed effects model” in panel data. In that case the researcher
has access to information from multiple time periods and individuals. She includes a dummy variable for
each individual (capturing an individual-specific effect across time periods);
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3.4.1 Projections of Block-Partitioned Matrices

Define the projection matrices P := X (X'X)™ !X and P, := X,(X5X5) ' X,. Define the
residual-making matrices M := [ — P and M, := I — P,. We can rewrite the residuals
of the regression specifications more succinctly in terms of the projection matrices. Suppose
that we substitute in the definition of 7,&1 and @Ey.

Ul=X, - X,(XLX,) ' X, X, = U,=MX,
Uy =Y — X,(X! X)) ' X, Y — Uy=MY

This means that 3 can be written as 8 = (X{MIM, X 1)~ (X MIM,Y). In the exercises
you will prove that ,5’1 = Bl. The conclusion is that both regression specifications (adding
trend as regressor or detrending) yield numerically the same estimator of the main effects.

As an input you will need the following lemma.
Lemma 3.4.1. The matrices P, Py, M, My satisfy the following properties.
1. P, Py, M, M are idempotent and symmetric.

2. PPQZPQCLTLdMPQZOTxT.

Proof. The result has two parts:

1. By Lemma 3.3.2 we know that P, P, are idempotent and symmetric. We show that M

is also idempotent and symmetric. The proof is analogous for M.

(a) (Idempotency) By definition MM = (I — P)(I — P). We can construct expand
out the sum as I — 2P + PP. Since P is idempotent, PP = P and the expression
simplifies to MM =1 — P = M.

(b) (Symmetry) By definition M* = (I — P)', which we can expand as (I — P"). Since
P is symmetric, P = P and M =1— P = M.

2. By construction X5 € Im(X) (each column vector is in the image). Since P is
a projection matrix onto I'm(X), then PX, = X5. We can plug-in the definition
of P, so that PP, = PX,(X5X,) ' X,. Substituting PX, = X, then PP, =
X,(X5X,)"'1X, = P,. The second result follows by plugging-in the definition:
MP, = (I — P)P, = P, — PP, which is equal to M P, = P, — Py = Opyr.
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3.5 Properties Appendix: Inverse of the Transpose

Lemma 3.5.1. Let A be a full rank mxm matriz. Then A' is invertible and (A")~1 = (A™1)".

Proof. If A is full rank then there exists a matrix A~! such that A=A = I. Transpose on
both sides, A'(A™1)! = I* = I. Then (A~1)! is the inverse of A’. O

50



3.6 Exercises

1. In this exercise you will prove a version of the Frisch-Waugh-Lovell Theorem ( ,

) in the detrending example.

(a) Prove that £, = (X! My X ) (XLM,Y).

(b) Show that the system in Equation 3.1 can be written in block-partition form as:
XiX1 XiX| B
XiX: XEXo| o]

(¢) Show that second row can be rewritten as f, = (X4X5) " 1(XLY — XL X15,).

Xty
Xty

(d) Plug the above result into the first row of equations and show that (X‘M,X )5, =
(X!M,Y). Conclude that §; = f;.

2. In the detrending example:

(a) Show that X full rank implies that X; and X, are full rank.
(Hint: Prove by contradiction)

(b) Define B = MyX ;. Show that replacing X; with the matrix B does not change
the image, i.e. Im(X1,X5) = Im(B, X3).
(Hint: Modify Lemma 3.1.1)

C ow that i is full rank then X 1) is full rank. int: Review Linear
Sh hat if X is full k th thMX full k. (H R L

Regression Section)
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Chapter 4

Convex Sets (I): Hyperplanes

4.1 Convex Sets

Convex sets feature prominently in microeconomic theory. For example they are used to
represent consumers’ preference for diverse bundles of goods. They capture the idea that
consumers prefer to consume a balanced amount (convex combination) of two goods rather
than have too much of a single one. Similarly, budget sets can be expressed as a particular
type of convex sets: a hyperplane. If two allocations are within a person’s budget then a
combination of them (rearranging the proportions) is also in her budget. In this case convex
sets capture the feasibility of an allocation.

Therefore it is of central importance to microeconomic theorists to understand how goods
are allocated given a budget set (hyperplane) and a set of preferences (a convex set). The
main theorems that we develop in this chapter are about the existence of hyperplanes.
In economics the hyperplane theorems have wide applicability in proving the existence of
equilibria and optimal solutions.

In this chapter we focus on proving a set of basic properties of convex sets. We revisit
three types of sets from real analysis (the interior, the boundary and the complement of the
closure). We will prove a hyperplane theorem for each case. The statement is relatively
similar (with minor differences in the assumptions and the results), so it useful to know how

and why each assumption is used.

Definition 4.1.1. A set X C R" is convex if

A+ (1=N2' e X Va2’ e X, VAel0,]]
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Convex Set Non-convex sets

Union of two
balls that is not
convex

Rectangle Ball Pacman Donuts

Figure 4.1: Examples

Definition 4.1.2. The vector x, € R" is called a convex combination of vectors x1,..., Tk,

if 2y = Y00 Mg and A € [0,1], S5, A = 1.

Lemma 4.1.1. A set X C R" is convex if and only if every conver combination ) of K

vectors x1,...,rx € X is contained in the set, i.e. xy € X, for any positive integer K.

Proof. (<) Set K = 2 and it follows by definition.

( = ) We will prove this direction by induction. If K = 1 then z), = = which belongs
to X by definition. Now, suppose that it holds for some finite K. Our objective is to show
it holds for K + 1. Let A{,..., A1 be scalar in the unit interval that add up to one.
If Ak4+1 = 1 then we are done because xf\{“ is a convex combination of a single vector.

Otherwise, assume that 0 < A7 < 1. We can rewrite the convex combination as:

K

1

it = (1= Ag1) (1_—)\K+1 Z Akxk) T AT
k=1

Define 2§ = —— Zszl Moz belongs to X. We can show that —%— > 0 and that

X 1—Apt1 1-Ak+41
Tlml i Ak = 1. Therefore, it follows that 2% is a convex combination of K vectors

and by the induction step, it belongs to X'. Finally to complete the proof, xf“ =(1-

e 1) + Mg 12k 1 which is contained in X by the definition of a convex set.
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4.2 Hyperplanes

Hyperplanes are useful building blocks to characterize certain sets in economic theory. For
example, suppose that there are n goods with prices p;, 1 < 7 < n. The consumer decides
to purchase a quantity z; of each good. Then her total expenditure can be expressed as
plr=>" j=1 Pjzj. Moreover, total expenditure needs to be less than or equal to her level of
wealth. If p!x = w then she is spending all her budget, but the feasible set' is characterized by

plx < w. We will prove a set of existence results for the existence of separating hyperplanes.

Definition 4.2.1. Let p € R"\{0,x1} and w € R. The set
H(p,w)={z e R": p'z = w}

Definition 4.2.2. Let X', )Y C R". Then

1. X and Y are weakly separated by H (p,w) if

¢
x
P L, Vzed Vye)
ZPY
2. The sets are separated if one inequality is weak but the other is not.
3. The sets are strictly separated if both inequalities are strict.
Weak Separation Separation Strict Separation

Figure 4.2: Types of Separation of Convex Sets

'In practical models there is also a constraint that the quantities consumed need to be non-negative.
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4.3 Separating Points from Convex Sets

4.3.1 Topology of Convex Sets

We will focus our attention on the Euclidean space, which is a complete metric space. We

define B(z,¢€) as an open ball with center z and radius e.

Definition 4.3.1. A point x € X C R" is an interior point if there exists an € > 0 s.t.
B(z,e) C X. We define int(X') as the set of all interior points of X', which we call the

interior of the set.

Definition 4.3.2. A point x € X C R" is a limit point if there exists a sequence z € X
such that z;, — . We define X the set of all limit points of X', which we call the closure
of the set.

Definition 4.3.3. The boundary of a set X C R" is defined as 0X := X \ int(X).

A few relations between the definitions hold for all sets. For example, int(X) C X every
interior point is contained in the set. Furthermore, X C X because if z € X we can always
define a sequence x = x. It also follows that a set is open if all its points are interior and

closed if it contains all its limit points. It can be shown that if X is open then X = int(X)

and if X is closed then X = X. See ( : ) for more details.
AT TS 77T

\ y \
\ \
) || | I
/ % /

/ N - P /
X T T intX) )¢ R

Figure 4.3: Example of the interior, boundary and closure.

By construction the sets int(X'), 0X and x° (the complement of the closure) are mutually
disjoint and their union is equal to the entire Euclidean space, R" = int(X) U 0X U x°.
That means that the three sets comprise an exhaustive list of cases that we will explore in

our hyperplane theorems.

Lemma 4.3.1. The interior int(X) and closure X of a convex set X are also convex.
Lemma 4.3.2. If X is a conver set, pick v € X and y € int(X), then Az + (1 — \)y €
int(z), YA € (0,1).
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Lemma 4.3.3 (Topological Equivalences on Convex Sets). Let X C R" be a convex
set, then (i) int(X) = int(X) and (i) 0X = OX.

Proof. (i) Since X C X, the direction int(X) C int(X) is straightforward. Let us prove the

other direction int(X) C int(X). Pick z € int(X). By definition, there exists € such that
B(z,¢) C X. We want to show that z € int(X). From the previous lemma we know that, if
we could write z = Az + (1 — \)y, for some x € X,y € int(X),\ € (0,1), then we are done.
So we are going to construct such a convex combination representation for z. Equivalently,
we are looking for z = §

Pick y € int(X). We want to pick A to guarantee that € X. Notice that ||z — z|| =
2z — y||. Let us pick A = m, then ||z — z|| = § < ¢, and hence z € B(z,¢)
and therefore z € X. Note that now we have constructed a A € (0, 1) together with a point

z— %y with the above restrictions.

y € int(X) and a point x € X, such that z = Az + (1 — \)y. By the previous lemma, we
have z € int(X).

(ii) By definition we have X = X \int(X). Using result in (i), we know it is also equal
to X\int(X), which by definition is OX. O

The interior, closure and boundary are particularly useful in convex analysis because
they are easier to analyze than other types of sets. Intuitively, Lemma 4.3.3 formalizes the

idea that a convex set does not have any holes “inside” the set.

X non convex X convex

-~

= - — -~
// \\ P \\ /’ \\ P \\
S ( ! ( ! ( !
\ ’ \ / \ / \ /
N S S _ 7 S
int(X) X X int(X) X int(X) X X int(X) 0X

Figure 4.4: Example with convex and non-convex sets.

Here is a numerical counterexample that shows convexity is important in the result.
Consider
X =(-1,0)U(0,1),

which is not a convex set. The closure of X is X = [—1,1]. But int(X) = (—1,0) U (0,1)

while int(X) = (—1,1).
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4.3.2 Non-Existence

Lemma 4.3.4. Suppose that X C R"™ and that d € int(X). Then there does not exist a
non-zero vector p € R™ such that p'z > p'd,Vr € X.

Proof. Proof by contradiction. Suppose that exists a non-zero vector that separates X and
d. Construct a new vector * = d — Ap. Then ||z* — d|| = ||\p|| = |Al||[p|]- On the other
hand, since the point d is interior there exists an open ball of radius € and center d such that
Bge € X. Set A < oy then 2™ € B(d,e) C X.

It follows that p'z* = p'(d — A\p) = p'd — A\p'p. The above quantity is strictly less than
p'd because p'p = ||p||*> > 0 by assumption. Therefore there does not exist a separating

hyperplane.
O

We can actually strengthen this result to extend to sets with minor changes.

Corollary 4.3.1. Suppose that X, Z C R"™ and there is a vector d € X N Z such that
d € int(X) . Then there does not exist a non-zero vector p € R™ such that p'z > p'z for all
reX, z€ 2.

Proof. By Lemma 4.3.4 there does not exist a non-zero vector p such that p'z > p'd. Since
d € Z there does not exists a hyperplane that separates the sets.
]

Figure 4.5: Separating hyperplanes do not exist between a point in the interior of the set and the
rest of the set. This also holds for two sets, if they intersect at an interior point of one of the sets.
This applies in general, not only to convex sets.
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4.3.3 Strict Separation

Lemma 4.3.5. Let X C R" be a non-empty and closed and d ¢ X. Then there exists a
minimizer ¥* = arg mingey ||z — d||?. Furthermore, the vector p = x* — d is non-zero.

Proof. If the set X is bounded, set A = X'. If not, define a set A(r) := B(d,r)NX. Choose
0 < r* < oo such that A(r*) # (), and set A = A(r*). A finite r* is guaranteed to exist
because X is nonempty. Since X is closed and B(d,r*) is closed and bounded in R", then
A is compact.

Define a function f(z) := ||z — d||?, which measures the square distance between d and
a point in the set X'. The function f is continuous. Since A is compact and non-empty we
can use the extreme value theorem to show that the function has a unique minimizer on the
set, * = argminge4 f(x). This is the closest point to d on the set A. We can also show
that this is the closest point in all of X'. By definition f(z) > r** > ||z* —d||? for all x in the
set A N X. Therefore ||z — d||?> > ||z* — d||? for all x contained in X. Defining the set A
is a necessary intermediate step to be able to use the extreme value theorem, which is only

stated for compact sets. Il

Theorem 4.3.1. Let X C R" be a non-empty, convex set and d ¢ X. Then there exists a
hyperplane H(p,w) that strictly separated X and {d}. That is,

pld<w and w<p'x, VreX

Proof. We prove our results initially for X, which ensures the existence of a minimum
distance point z* € X in the preceding lemma, because X is closed. Our results will apply
to X because X C X.

Define the vector p := x* — d and the convex combination xy = A\z* + (1 — A)z for some
A € [0,1],z € X. Since the set X is convex (see exercise) then ), € X, which in turn
implies that [|zy — d||*> > ||=* — d||?, VA € [0,1]. This inequality will be the basis for the
hyperplane separation, which is also an inequality. We can readily verify that z), — d =
Az* —d) + (1 — N)(x — d), which is equal to Ap + (1 — A\)(z — d). Therefore, we can use

Lemma 4.3.5 to rewrite the inequality.
Nlpl? + 2A(1 = Np'(x — d) + (1= AP |lz = dI]> > []pl]*, A€ [0,1]

We can subtract ||p||* from both sides. Notice that (A% —1)||p||? = —(1+X)(1—=N)||p||*>. We
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can rearrange the inequality and divide by (1 — \) as
—(1+N)|pl?+20 (z —d)+ (1= N)|]z —d|* >0, VAe0,1)

The inequality is not defined for A = 1 because then we cannot divide by (1 — \). Now
suppose that we take a sequence \; € [0,1) such that \y — 1. We use the property that

limits preserve weak inequalities?:
=2||p|[* + 2p"(x —d) > 0

Therefore, pt(z — d) > ||p||> > 0. That means that p‘z > p'd for all x € X. This ptz > p'd
for all x € X since X C X. To complete the proof set w = p'd + @.
O

Corollary 4.3.2. Let X C R"™ be a non-empty, closed, convexr set and d ¢ X. Then there
exists a hyperplane H(p,w) that strictly separated X and {d}. That is,

pld<w and w<p'z, VreX

Proof. If X is closed, then X = X and we can apply the strict separating hyperplane
theorem directly for the case when d ¢ X. ]

2We can also write our set of inequalities as g(\) > 0 where g is a quadratic function whose coefficients
depend on constants ||p|| and ||z — d||. Then limy_; g(\) > 0. The left-hand side converges because g is
continuous.
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4.3.4 Weak Separation

Theorem 4.3.2. Suppose X C R" is a non-empty convez set, d & int(X). Then there exists
a non-zero p € R"™ such that p'z > ptd,Vx € X.

Proof. Recall that int(X)° = 09X UXC. If x € X° then we can apply Theorem 4.3.1 and
obtain a strict separating hyperplane. Since strict separation implies weak separation.
Suppose that d € 0X. By using Lemma 4.3.3 if X is a convex set then X = 0X. That
means that d € OX. We will initially prove the theorem for X'. This implies that for any
integer n there exists a vector d, ¢ X such that ||d—d,|| < + (if it didn’t exist then = would
belong to the interior of X). By Theorem 4.3.1, for every integer n there exists a non-zero

pn such that
pl(z—dy,) >0, VreX

Unfortunately, we cannot be sure that p, converges. Let us transform the vector to ensure
that p, = p,/||pa|| has unit length. Since ||p,|| > 0 then we can divide the inequality on
both sides:

p(r—d,) >0 VreX

The set of vectors of unit length is compact (closed and bounded). Therefore, there exists a
convergent subsequence such that p,, — p. By construction p is of length one and therefore,
non-zero. Furthermore, since d,, converges to d, it follows that every convergent subsequence

also converges, including d,, . We can take limits on both sides

lim p, (x —dy,) >0, Vel

k—o0

plx—d) >0, VxelX

The inequality is weak because limits only preserve weak inequalities. To complete the proof
notice that X C X. Therefore,

Plla—d) >0, VeeX
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4.4 Separating Two Convex Sets

4.4.1 Operations on Convex Sets

Definition 4.4.1. Let C(A) := {X, C R" : @ € Z} be an arbitrary (finite or infinite)
collection of sets indexed by a o € A C Z. Define the intersection of the sets in the

collection as
ﬂXa::{mER”:xeXa,VaeA}
acA
Lemma 4.4.1. If C(A) is a collection of convex sets. If (), Xa non-empty then it is

CONnver.

Proof. Suppose that we choose z,2’ € (1,4 As (which is non-empty by assumption).
Choose an arbitrary set X, € C(A), then x,2’ € X, by definition. Construct x, =
Az~ (1= A)a', X € [0,1]. The vector ) € X, because the set is convex. Since this holds for
all X, then x) € (,c4 Xa for all A € [0,1]. This shows that the set is convex. O

Definition 4.4.2. Suppose that we have two sets A, B C R”. Addition and subtraction of

the sets is defined, respectively, as.

A+B={2eR":z2=a+b, ac A be B} Addition of Sets
A-B={zeR":z=a—-b, ac A, be B} Subtraction of Sets

Lemma 4.4.2. Suppose that A, B C R"™ are non-empty convex sets. Then (i) A+ B and
A — B are convex. (i) 0,41 € A — B if and only if AN B # ).

Proof. (i) Choose two arbitrary elements in z, 2’ € A+ B. Then there exist vectors a,a’ € A
and b,b’ € B such that x = a+b, 2’ = a/+0V. Since A and B are convex, ay := Aa+(1—\)d’ €
A and by := Ao+ (1—- )b’ € B. That means that a)+by = AMa+b)+(1—-\)(a'+V) € A+ B,
which means that A + B is convex. The proof for A — B is analogous.

(i) = if 0,,x € A — B then there exist a € A,b € B such that a — b = 0. This implies
a = b and therefore AN B # ().

<= Conversely, suppose that © € AN B, which is non-empty by assumption. Then
0,,x = * — x, which is contained in A — B.

O
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4.4.2 Weak Separation

Lemma 4.4.3. Let X, C R" be two convex sets. If X NY = () then there exists a non-zero
p € R™ such that p'x > p'y for allx € X,y € ).

Proof. Define the set W := X — ). Then we can plug-in the definition of the set W to

rewrite the statement of the lemma.
pr—y) >0, VeeX,VWwey << pw>0, YweWw

By Lemma 4.4.2 the set W is convex and since X N'Y = ) then {0,.1} ¢ W. Since
int(W) C W then {0,x1} ¢ int(W) and we can apply Theorem 4.3.2 to show that there
exists non-zero p such that p'w > p'0,,«; = 0. This completes the proof. O
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4.4.3 Strict Separation

Lemma 4.4.4. Let X C R" be a compact set and let Y C R"™ be a closed set. Then the set
X — ) is closed.

Proof. Define W = X — ). Then w is a limit point of W if there exists wy € WV such that
wy — w. By definition, there exist xp € X and y; € ) such that wy = ;. — y,. Since the set
X is compact there exists a convergent subsequence k; such that z;, — * € X. Since wy,
converges to w, the subsequence wy, also converges to w. This implies that the subsequence
Yk, = T, — Wy, converges to some y* = w — x*. Since ) is closed, then y* € V.

Therefore, there exists z* € X and y* € Y such that w = 2* — y* and the limit point is
contained in W. To conclude, this means that the set W is closed.

]

Theorem 4.4.1. Let X C R™ be a non-empty, convex, compact set and let Y C R"™ be a
non-empty, convezx, closed set. If X N'Y = 0, then there exists a non-zero p € R™ and a

scalar w € R such that p'x > a > p'y for allx € X and y € V.

Proof. Define the set W := X — ). By definition, we can restate the Lemma as:
Px—y)>a, VeeX,Vyely << pw>a, YweW

By Lemma 4.4.2 the set W is convex and since X N Y = () then {0,x1} ¢ W. Since W is
closed we can apply 4.3.2 to show that there exists a non-zero p € R" and a scalar a* € R
such that p'w > a* > 0.

Let Ly denote the infimum of p'x over X and let Uy be the supremum of p'y over V.

Then we can plug-in the definition of YW and rewrite the equation as

Pr—y)>a" VeeX Vye)

plx >a* +ply VoeeX, Vye) Rearranging Equation
in/f\/ ply>at+ply VreX Finite Infimum because of Finite RHS
xe
Ly > a* +supply Finite Supremum because of Finite LHS
yey
LX Z a* + Uy

Set a = % + Uy, a midpoint of [Uy, a* + Uy]. Then,

px>Ly>a >Upy>ply, VreX, Vye)
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4.5 Exercises

1. For any p € R"\{0} and a € R, let
h(p,a) = {z e R*p"z > a}

be the half space generated by the hyperplane H(p,a). Assume D is a closed subset
of R™. Let E be the intersection of all half spaces that contain D, i.e.

E = ﬂ h(p,a).

h(p,a)DD

Prove D is convex if and only if D = FE. This gives another characterization of

convexity. (Hint: separating hyperplane theorem.)
2. Assume U C R" is convex. Let x* € U be a point. Prove the followings are equivalent:

(a) there is no x € U such that z; > 2} forall i =1,--- | n,

(b) there exists A € R \{0} such that z* solves

max N z.
zcU

3. Let D be a nonempty convex subset of R™. Prove its closure D is convex.
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Chapter 5

Convex Sets (II): Cones

Some types of optimization problems are unconstrained. For example, in a linear regression
the parameters are optimized over all of R”. However, problems involving resource allocations
(in practical or theoretical problems) are bounded by capacity or other types of resource

constraints.

Definition 5.0.1. Let A be an m x n matrix. The finite cone spanned by the column

vectors a; € R" is defined as
cone(A) :={z€R™:z= Z)\jaj, A; >0}
j=1

The set of vectors with non-negative entries is denoted by R’!'. For example, we could

replace the restriction in the definition of a cone with A € R™" instead of A; > 0 for all j.
Definition 5.0.2 (Ordering of vectors). Let a,b € R™.

(i) (Weak Inequality) We say that a > b if a; > b; for all i € {1,...,m}.

(i) (Strict Inequality I) We say that a > b if a > b and a;+ > b;« for at least one i*.

(ili) (Strict Inequality II) We say that a > b if a; > b; for all i € {1,...,m}.
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5.1 Finite Cones are Convex Sets

Lemma 5.1.1. Let A be an m X n matriz. The cone of A is a convex set.

Proof. Suppose that b0’ € Cone(A) then there exists a vector A\, \' € R} such that A\ =
and AN =10". Let 6 € [0,1]. Define by := 0b+(1—0)b' = AN+ (1—60) AN . By linearity this is
equal to A(OA+(1—0))\). We can verify that Ay > 0 because it is the convex combination of
the two non-negative vector (each individual entry is non-negative). Therefore, by € Cone(A)

for all 6 € [0, 1]. That means that Cone(A) is convex.
U

~e

Cones are
convex

Figure 5.1: Example
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5.2 Finite Cones are Closed Sets

5.2.1 Carathéodory’s Theorem

Definition 5.2.1. Let A be an m X n matrix. A column submatrix of A is a matrix that is

constructed by selecting some (or all) the columns of A.

Definition 5.2.2. Let A be an m x n matrix. Define A := {A;} as the collection of column

sub-matrices of A. The collection of full rank column submatrices is denoted by A* C A.

Theorem 5.2.1. (Carathéodory’s Theorem) Let A be a non-zero m x n matriz, then

Cone(A) = U Cone(Ag).

ApeA*

Proof. We will show the equality of the sets in two steps.

(1) Ua,ea- Cone(Ay) C Cone(A): If z € R™ belongs to the union of cones, then there
exists a full-rank column submatrix Aj such that z € Cone(Ay). Suppose that Ay is an
m X p matrix. That means that there is a vector with non-zero entries, A € Rf such that
x = AgA. Suppose (WLOG) that Ay is constructed by dropping the last n — p columns of A,
which are recorded in the matrix B. Then x = A\, + B0¢,_p)x1. That means that z = A",
where \* stacks A and 0(,_p)x1. Since A* € R"}, then x € Cone(A).

(i)  Cone(A) €Uy, ca-- The first part of the proof involves some preprocessing of the
matrix A. We want to discard some easy cases where the relationship holds in order to apply
our main proof strategy. (I) Suppose that A is already full rank, then define Ay = A and we
are done. (II) Suppose that A is not full rank rank. Let’s break this down into two cases:
(ITa) First, suppose that = 0,,%1. Since A is non-zero, we can always construct a full rank
column submatrix by setting A, = a*, where a* is a non-zero vector. Then we can define
0,31 = ApA where A = 0. That means that 0 € Cone(Ay) C Uy, c4- Cone(Ay).

(ITb) Now let’s consider the case where z is non-zero. Since z € Cone(A), then x =
> i1 Aja;, where A € R7}. If some \; are zero then construct a new matrix by dropping
some of the columns. For notational simplicity assume that this column submatrix is our
new starting point, calling it A. WLOG assume that this column submatrix is not full rank,
otherwise we are done.

By Lemma 2.2.1 since A is not full rank, there exists a non-zero vector 5 € R™ such that

0= Z?Zl Bjaj. At least one f3; is non-zero and we can assume without loss of generality
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that it is strictly positive (if it isn’t just multiply both sides by negative one). We define the
following auxiliary quantity,
Bi
‘= max — >0
ILL je{lv'"vn} )\]7 ILL
The quantity p is positive by construction because we have preprocessed the matrix (dropping
certain columns) so that all A\; > 0 and there is at least one 5; > 0. We can rewrite the

vector x as:

T = Z Ajaj + 01 (Add a zero vector)
j=1
1
= Z Ajaj + — Z Bja; (Because A has a non-trivial kernel)
p =
= (/\j — &) a; (Grouping terms)
=1 H
0
)\.
= Z Nl 1— == a; (Multiplying and dividing by A; > 0)
: T
7=1
Bj
: : (%)
= Z )\jaj Define )‘j = )‘j 1— T
j=1

Since p = % for some j*, then at least one 5\]-* = 0. Furthermore, 5\]- >0, Vje{l,...,n}
because f—j < p. Drop all the columns for which S\j = 0 (there is at least one column
dropped), call this A;. Then = € Cone(Ay). If the matrix is full rank then we are done.
If not repeat the process until you obtain a full rank matrix A;. The process has to stop
eventually because (i) there are a finite number of columns to start with, (ii) at least one
column is dropped at every step if Ay is not full rank and (iii) x is non-zero and A has at

least one non-zero column (which rules out the case there all A\ are Zero).
O]
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5.2.2 Main Result

Theorem 5.2.2. Let A be an m X n matriz, then cone(A) is a closed set.

Proof. By definition, cone(A) is closed if for every sequence z; € cone(A) such that z, — x,
then x € cone(A). If A is a zero matrix, then cone(A) only contains one point (the zero
vector) and therefore it is closed. If A is non-zero, by Theorem 5.2.1 each x4 belongs to
the cone of at least one full rank submatrix Ay € A*. Assign each vector to a submatrix
such that =, € cone(Ag). Let x5, denote a subsequence of vectors assigned to matrix k.
The total number of submatrices is finite because A has a finite number of columns. This
implies that at least one subsequence has an infinite number of elements because of the
pidgeonhole principle. WLOG assume that it is z,,. Because z, is a convergent sequence,
x5, also converges to x.
Suppose that Ay is an m x [ matrix (I < n). Since it is full rank and z,, € cone(Ay),
there exists a unique vector A, € Rﬂr such that AgAs, = x,, (it is an over-identified system).
It can be solved by computing A\, = (A} A) ' A}z, = Bx,, . The linear map T '(z) = Bx
is continuous, which means that limg, .o As, = B lim,, ;o T, Which is equal to Bx = A\*.
The vector A\* € R!, because every element in the sequence belongs to Ry and the set is
closed. To complete the proof we need to show that Ax\* = x. The linear map T'(\) := A\
is continuous, which means that ApA\* = Ay (lims, 00 As, ) = limg, o0 (ArAs,) = .

O
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5.3 Farkas’ Lemma

Lemma 5.3.1. Let A be an m x n matriz and b € R™ then exactly one of the following

statements is true:

1. be Cone(A).
2. There exists a non-zero p € R™ such that p!A > 01y, and p'b < 0.

Proof. We will prove the result by cases.

(i) Suppose that b ¢ Cone(A). By Lemma 5.1.1 the Cone(A) is convex and because
of Lemma 5.2.2, it is closed. Therefore, there exists a separating hyperplane such that
plx > a > p'b, for all z € Cone(A). We will impose a stronger version of this inequality
by using the specific properties of the convex cone. Since 0 € Cone(A), it follows that
p'0 = 0 > a. On the other hand suppose that there exists an x € Cone(A) such that
p'z < 0. It follows that x* = Az € Cone(A) for any A > 0. However, if \ is chosen
sufficiently large then

pla* = p'(\x) = \plz < p'b

which violates the hyperplane result. That means that p'z > 0 and we can prove the
stronger inequality p'z > 0 > p'b, Vo € Cone(A). Furthermore, notice that the column
a; € Cone(A). That means that p‘a; > 0 for all j € {1,...,n} or equivalently, p'A > 0y,.

(i) Suppose that b € Cone(A). Assume that there exists a non-zero p € R™ such that
p'A >0 and p'd < 0. Since b € Cone(A) then there exists A € R, such that b = A\. Then
ptb = pt AX. Since p'A is a 1 x n non-negative vector and \ is non-negative, then p! A\ > 0;;.

However, this violates the premise that p'b < 0. This completes the proof.
O
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5.4 Application: Financial Arbitrage

This section is inspired by ( )

There is a financial market which trades n different assets. The price of one unit of each
asset is ¢; for j € {1,...,n} and we can stack the prices in a vector ¢ € R™.

The return of each asset is risky. We will model this uncertainty by assuming that there
are m different states of the world. For example, the assets could represent the stock returns
of different companies and the states capture cases where the economy is performing well,
average or poorly. We will assume that the returns are modeled as an m xn return matrix, R,
with rows representing the state of the world and the columns the return of each company. In
this model there is no time (although we can interpret R as a matrix that already discounts

future returns).

Ry -+ Ry, q1 Riu—q - Rin—aqn

le Rmn dn le—(h Rmn_qn

The matrix II represents the profits in each state, net of the assets’ initial price. This
can be expressed more succinctly in matrix form as II = R —1,,41¢". The unit vector ensures
that the initial price is subtracted from the return in each state (because the initial price is
paid regardless). Notice that m is not necessarily equal to n, that means that the market
could be incomplete (m > n) or that there are redundant assets (m < n).

The investor decides to invest an amount x; in each asset. Her total portfolio is a vector
x € R". If z; > 0 then the investor pays the initial price and receives a return tomorrow (a
long position). If instead z; < 0 then the investor sells the asset to somebody else today
(e.g. stocks to raise capital) and agrees to pay the returns tomorrow (a short position). The

total returns from a portfolio are r := Ilx.

Definition 5.4.1. If there exists a portfolio vector x € R™ such that IIz > 0, then we say

that there is an arbitrage opportunity in the market.

If an arbitrage opportunity exists then an investor can ensure that she can obtain a
strictly positive return in each state. These opportunities arise from a mispricing of the
assets in the market. However, what does it mean to “price” the asset correctly, specially in
a world with incomplete markets? This is the question that the Arbitrage Theorem attempts

to answer.
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Theorem 5.4.1 (Arbitrage Theorem). Let II be an m X n net profits matriz. Then exactly

one of the following statements holds.
(a) There exists an x € R" such that 1z > 0,,%x1 (Arbitrage).

(b) There exists a probability vector p such that p'Il = 01y, (Ezpected value pricing)

Recall from Definition 1.6.2 that a probability vector is a vector that has non-negative
entries (7 > 0) and its entries add up to one (p'l,x1 = 11x1). The second condition can be

restated as follows
PtH = ptR - ptlnxlqt = 01xn - qt = ptR

The vector p'R is vector with the average return of each asset (its expected value). Viewed
in this way the Arbitration Theorem can be stated as follows: “A financial market does
not have arbitrage opportunities if and only if assets are priced according to their expected
returns”. This is another way of stating theorems that are written as “exactly one condition
must hold”.

The Arbitrage theorem is an insightful application of Farkas’ Lemma. The proof is
interesting because it reveals that we can transform many problems involving probabilities

into a linear system with cones.
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Proof of Arbitrage Theorem. We break down the proof into two cases:

(i) Suppose that condition (b) holds, then there exists a probability vector such that
p'Tl = 01,. If (a) holds then there exists a vector z* € R"™ such that Ilz* > 0,,%;. There-
fore if p is an m x 1 non-negative vector with at least some positive entries,, p'Ilz* > 0.
However, if condition (b) holds then p‘II = 01y, which implies that p'Tlz* = 0, a contradic-

tion.

(ii) Suppose that condition (b) fails. It is useful to rewrite the condition to rewrite it in
terms of cones before negating it so that we can apply our previous results. Condition (b)

can be stated as: There exists a p such that:

pIl = 0

I = 044y, IT 0,
b = Plaa=1 = p=| """, p=0
p probability vector Ixm 1
p=0
Ht Onxl . .. .
Define A, = 1 and b,y = it Therefore the negation of the condition is
1xm

b ¢ Cone(A) (there does not exist such a p). We can then apply Farkas’ lemma (using
slightly different notation for the vectors): There exists a non-zero vector s € R"*! such

S

that s'!A > 0 and s'b < 0. We can partition the vector as s = [ ], where s € R™ and

51
s1 € R. In block partitioned form this means that:

I
[Stn 81} 1 > 01xm
s'A > 01xp bam SHIT 4+ $1115m > O1xn,
sth < 0 51 <0
[ . ] [0m><1]
sy S1 ) <0

Notice that the term s; is not transposed because it is a scalar. Therefore shII* > —s111x,,
which is strictly greater than zero because s; is strictly negative. We can transpose the result
to show that ILsy > $11,,%1 > 0. Therefore condition (a) has to hold.

[
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5.5 Exercises

1. There are several different characterizations of Farkas’ Lemma. For example

Lemma 5.5.1 (Farkas’ Lemma V2). Let A be an m x n matriz and b € R™. Then
one and only one is true:
(i)  There exists x € R"™ such that Az <b.

(ii)  There exists y € R™ such that y > 01, Y'A = 015y, y'b <0.

In this exercise, you will prove the lemma.

(a) Define C = [A, —A, Lixm] € R™ x R*™_ Show that condition (i) is equivalent
to b € Cone(C) (Hint: Use properties of block-partitioned matrices and define a

vector z € R2"H™).

(b) Show that condition (ii) is equivalent to: There exists y € R™ such that y'C >
01 (2n+m) and y'b < 0.

(c) Use the original Farkas’ Lemma to prove (Version 2).

2. Consider an alternative restriction on asset prices.

Definition 5.5.1 (Pricing Restrictions). Suppose that there does not exist an x € R”
such that (¢'z <0 and Rz > 0,,%;) or such that (¢'z < 0 and Rz > 0,,x1).

(a) Write down an economic interpretation of this condition.

(b) Suppose that there exists a set of portfolio weights € R™ that yield positive
returns in every state (Ilx > 0). Show that Rzr > 1,,x1¢'z. Give a simple
example of a return matrix R, a price vector ¢ and a portfolio x where this holds
but the conditions in Definition 5.5.1 does not hold.

(c) Suppose that there exists a probability vector & € R™ with strictly positive
entries which satisfies oIl = 0;y,,. Show that Definition 5.5.1 is satisfied.
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Chapter 6
Quadratic Forms

In previous chapters we have limited our attention to linear maps. Now we will focus on a
different type of map, a quadratic form which generalizes quadratic function f(z) = ax? to
the Euclidean space. This appears in several areas of economics. For example, the variance of
a linear combination of random variables can be represented as a quadratic form. Similarly,
this type of maps can be used to characterize the derivatives of certain types of function

(e.g. convex) that arise frequently in decision theory.

Definition 6.0.1. Let A be an n x n matrix and let x € R™. Then the function T'(z) = ' Ax

is a quadratic form in z.

Notice that T : R® — R, which means that the output is a scalar. We will illustrate the
definition with an example. The variance formula is a canonical type of a quadratic form.
We will not prove why it holds but rather focus on what it implies from the point of view of

matrices.

Example 3. Suppose that Y1, ...,Y,, is a set of random variables,and let x4, ..., x, be a set
of constant weights. Define the weighted average as Y, = Yo z;Y;. For example, if x; = %

then' Y is a simple average. Then the usual variance formula is defined as:

n n

Var(Y,) = Z Z r;7;Cov(Y;, Y))

i=1 j=1

If A'is a covariance matriz with ij entries equal to Cov(Y;,Y;) and x is a vector of weights,

then Var(Y) = ' Ax.

The example with the variance illustrates that quadratic forms can be written in terms
of a double sum, 2’ Az =, > ;7 a5, which can be verified using the definition of matrix

multiplication.
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6.1 Positive (Semi) Definite Matrices

The covariance matrix A of a vector of random variables has several interesting properties.
It is symmetric because Cov(Y;,Y;) = Cov(Y};,Y;). Furthermore, since all random variables
have non-negative variance, then Var(Z) > 0, where Z = ), ,;Y;. These properties can be

expressed succintly in terms of the covariance matrix.

Definition 6.1.1. Let A be an n x n matrix. The matrix A is positive semi-definite if it is

symmetric and z'Ax > 0 for all z € R™.

Notice that the definition allows for the possibility that 2tAz = 0. To see an example
where the variance is equal to zero, assume that Z =Y — Y = 0 where Var(Y) > 0. In
this case the same random variable is subtracted from itself. In matrix form suppose that
Y1 =Y and Y, = Y, then Cov(Y1,Ys) = Cov(Y,Y) = Var(Y). The resulting covariance
matrix is:

Var(Y) Var(Y)
Var(Y) Var(Y)

1
A:

Y €r =

] — z'Az =0

The reason why the variance of the linear combination is zero in this case was because the
two random variables were colinear, which suggests a link between stochastic (random) no-
tions of colinearity and positive semi-definiteness of the covariance matrix. In fact, stochastic

linear independence is best captured by a stronger property known as positive definiteness.

Definition 6.1.2. Let A be an n x n matrix. The matrix A is positive definite if it is
symmetric and 2’ Az > 0 for all x € R"\{0,,x1}.

The definition of positive definiteness excludes z = 0 because 0'A0 = 0 regardless of the
properties of the matrix. In the variance example, it says that any linear combination of
random variables with non-zero weights has strictly positive variance.

We can also define similar notions of negative (semi) definiteness.
Definition 6.1.3. Let A be an n X n symmetric matrix.
(i) It is negative semi-definite if ' Az < 0 for all x € R™.
(ii) It is negative definite if z'Ax < 0 for all x € R"\{0,,x1}.

Mathematically, a lot of derivations are similar for negative (semi) definite matrices as

in the positive (semi) definite case so we will only focus on the latter.
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6.1.1 Implications, Examples and Counter Examples

Lemma 6.1.1. Let A be an n X n positive semi-definite matriz. Then the diagonal entries
are all non-negative. Furthermore, if A is positive definite the diagonals are all strictly

positive.

Proof. Suppose that e; is an elementary basis vector (includes a one in entry ¢ and zero in
all other entries). Then we can verify that e!Ae; = A;. When A is positive semi-definite

et Ae; > 0 and when it is positive definite el Ae; > 0. ]

However, the non-negativity of the diagonals is not sufficient to ensure positive semi-

definiteness. Consider the following counter example:

Az[l 2], x:[1] = Az =
2 1 -1

More conditions need to be imposed on the off-diagonal elements. It is hard to visualize such

—1
1] — glAr=-2<0

restrictions in general because the matrix A can have a lot of elements. Consider a restricted

case where the diagonals are all one (a property satisfied by correlation matrices).

Figure 6.1: Shape of a Correlation Matrix (Rousseeuw and Molenberghs, 1994)

Figure 6.1 shows that the set of positive definite matrices as a convex set (see exercises).
In this case correlation matrices, satisfy a few interesting properties. The off-diagonal
elements of the correlation matrix need to be less than or equal to 1 in absolute value, but
that is not the only restriction. The valid correlations are inside the solid mesh. Typically
correlations are not transitive (X positively correlated to Y and Y positively correlated to
Z does not imply that X is positively correlated to Z), unless correlations are close to the

boundary of the set.
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6.1.2 Cholesky Decomposition

Positive scalars have a well-defined square root. The way to generalize this concept to

positive definite matrices is through a Cholesky decomposition.

Definition 6.1.4. An m x m matrix A has a Cholesky decomposition if there exists a lower
triangular, full rank matrix L such that A = LL'.

Lemma 6.1.2. Let A be an m x m matriz. The matrix is positive definite if and only if it

has a Cholesky decomposition.

Proof. We prove the lemma in two parts: <= If L is a lower triangular full rank matrix.
Vo # 0, L'z # 0 (because L is full rank). Then #'LL'z = (L'z) L'z > 0.

—> We will use an induction argument.

(i) If m =1, then A is a strictly positive scalar. Set L = y/a,,.

(ii) Let m > 2. In the induction step suppose that all positive definite (m — 1) x (m — 1)

matrices have a Cholesky decomposition.

(iii) Now we will show that the result holds for m. Since m > 2, we can write a matrix
Apxm in terms of blocks ay; (1 x 1 matrix), Ajs (1 x (m — 1) matrix), Ay ((m—1) x 1

matrix), As ((m — 1) x (m — 1) matrix). In block form:

a11 A12

A21 A22

A:

The proof will have two steps.

(a) Define S := Ay — -1~ Ay Ajs, a candidate matrix. We will show that S is positive

ail

1
a1 A12y

Y

definite. Construct z = € R™ for an arbitrary y € R™'\{0}. The

resulting x is non-zero.
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0 < ztAz

I | —an Ao —%Auy
— (_tAmy)t yt 11
- - _A21 Ago Y
r 1 — 2 Ay + Ay ] : inlvi
= (=2 Apy) o an (Right Multiplying)
e - _—ﬁAzlAmy + Agy |
- . [ 0 i
= |(—=Apy)t
e ) . _—ﬁAmAmy + Agy |
1
=y (Ayp — —An Ay (Left Multiplying)
aii
1
— y'Sy Define S = Agy — — Ay Ajs.
ary

Therefore, y*Sy > 0 for all y € R™'\{0}. By Definition S is positive definite.

(iv) By the induction step, since S is a positive definite matrix of size (m — 1) x (m — 1)

then it has Cholesky decomposition. That means that there exists a full-rank, lower
triangular matrix such that S = LgL%L. We will propose a Cholesky decomposition

using a guess and verify strategy:

[ Vaii len]
L = X

—An Ly
To complete the proof we show three things:

(a) The matrix is lower triangular (by construction).

(b) It is full rank. By Lemma 6.1.1, since A is positive definite, then /a,; > 0.

0
Construct a matrix B = | "

Vay,
1

Ag
\/all
on the first row). By Corollary 2.2.1, the matrix L has to be full rank.

(¢) We will show that A = LL".

I ] which is full rank because Lg is full rank. Then
S

is not in the image of B (because all columns of B have zero

the column [
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LIt — [ \1/a11 Oixn | [Vo11 \/%Alz
A2 Ls | | O L

_Cl11 Aqg
Ay Ay Arg + LsLY

L ail

ai A12
Ay (%HA21A12 +S

where the first equality is using the fact that A is symmetric (from positive definiteness)
and hence AL, = Aj5. This completes the proof, therefore all positive definite matrices

have a Cholesky Decomposition.

6.1.3 Partial Ordering

The covariance matrix of estimators can often be shown to be positive definite. In the
multivariate case (a vector of estimators) we need to define a notion of when the variance of
estimator is “lower” than another. Individual comparisons of variances can be helpful but

incomplete. The proper notion of ordering is the following.

Definition 6.1.5. Let A and B be two positive definite matrices. Then we say B > A if
B — A is positive definite.

This implies that 2f(B — A)z > 0 for all x € R™\{0,,x1}. Therefore z'Bx > 2" Az and we
can say that the quadratic form of A is always strictly lower than that of B. In the variance
example, it says that the variance of a linear combinations of estimators (with covariance

matrix A) is strictly lower than those of estimators with covariance matrix B.

81



6.2 Exercises

1. Let A be an n x n square matrix. Assume:
et Ar =0, Ve € R".

(a) Prove all diagonal components of A are 0 € R.

(b) Show by example that condition (6.1) does not imply A = 0.
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Chapter 7
Determinants

Definition 7.0.1. Let A be an n x n matrix and let n > 2. The minor A;; is obtained by
deleting the i-th row and the j-th column of A.

Definition 7.0.2. Let A be a n X n matrix, its determinant, denoted by det(A) is defined

recursively in the following way.
1. If Ais a1 x 1 matrix, i.e. det(A) = aq;.

2. The determinant for an (n + 1) x (n + 1) matrix A is defined as

n+1

det(A) = (—1)"Haydet(Ay;).

Jj=1

For example, if A is a 2 x 2 matrix:

Q21 A22

det(A) = ( du ) R — det(A) 1= (110922 — A12a921
For example, let A be the following 3 x 3 matrix:

aix aiz2 A3
Q21 d22 (23

a31 daz2 G33

Then

Ag2 A3 Q21 Q23 a21 A2
det(A) = a1 — a2 + a3

agz2 ass 31 A3z asy as2

= an(a22a33 - a32a23) - a12(a21a33 - a31a23) + a13(021032 - a22a31)-
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We present the following properties of determinants without proof.

Lemma 7.0.1 (Basic Properties of Determinants). Let A = [ay,as,...,a,] be an n X n

matriz, where a;’s are the column vectors of A. Let b be an n x 1 vector. Let c be a scalar.

o det([ay,...,a; +b,...,a,]) = det([aq, ..., aj, ..., a,]) + det([aq, ..., b, ..., a,)])

det([aq, ..., ca;, ..., a,)) = ¢ det([aq, ..., aj, ..., ay))

det([ay, ..., a;, ..., aj, ..., a,)) = —det([ay, ..., aj, ..., a;, ..., ay))
o det([ay,...,ai, ...y ...;ay]) =0
Lemma 7.0.2 (Properties of Determinants). Let A, B be an n X n matriz and o € R. Then
o det(A) = det(AT).
o det(A) # 0 if and only if A is full rank.
o det(AB) = det(A)det(B).
o det(aA) = a"det(A).

o det(I) =1.
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7.1 Characteristic Polynomial

Lemma 7.1.1. Let A be an m x m matriz and A € C, then det(Al — A) is a polynomial of
degree n in \ and the coefficient of \" is 1.

Proof. We will prove this by induction.

(i) For n =1, det(A — A) = X\ — ay;. This a polynomial of degree 1 and the coefficient in
front of A is 1.

(ii) Assume for n = k the determinant of a matrix in this form is a polynomial of A with

degree k and the coefficient of A\* is 1. Consider n = k + 1. By expansion by the first

Trow,
A —ap —ai2 Tt —A1n
—a21 A—ax - —Q2n |B[
—Qnp1 —Qp2 e )\ — Qpp

= (A —ay) det(Byy) + (=1 (—a1s) det(Bya) + - - + (=1)"™(—ay,) det(By,)

Note that each det(B;;) for 2 < j < n is a polynomial of degree k — 1. For det(By,), it
is a polynomial of degree k and the coefficient of A* is 1 by our induction assumption.
Hence this whole term is a polynomial of degree k + 1 and the coefficient of \¥*1 is
again 1. Therefore, if A is an n X n matrix, det(Al — A) is a polynomial of A with

degree n and the coefficient of A" is 1. We write it as
N — Al = X"+ b, N+ by

We call this polynomial the characteristic polynomial of matrix A. We call A is an
eigenvalue of A if A is a root of its characteristic polynomial.

]

Example 4. If A is an n x n upper (lower) triangular matriz, then all its eigenvalues are

its diagonal components:

A — a1 —Qa12 e —Qin
0 A—ag - —ag, -
. . , . =[O} = an)
: : " : =1
0 0 R
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Example 5. Let
1
s 0
-1 0

det(\ — A) = N2 +1

then

Clearly, there is no real number X satisfying \> +1 = 0. This example tells us there may be
no real eigenvalues even if the matriz A is real. But we know there are two roots of N> +1 = 0
in complex numbers C, ¢ and —i. That is if we consider A as a matrixz over the field C
(Recall we can always do this because R is a subfield of C), it has two eigenvalues and they
are in C. ¢

The nonexistence of real eigenvalues of a matrix A can be easily resolved if we always

consider the matrix A is over the field C even if it is real. Recall:

Fundamental Theorem of Algebra: Let P(z) = 2" + b, 12" 1 + -+ + by
where by, -+ ,b,_1 € C, then there exists x1,---,z, € C such that P(x) =

[Timi(z — 2).

It tells us a polynomial with complex coefficients of degree n always has n complex roots if
each root is counted up to its multiplicity. Clearly, every real coefficient polynomial can be
considered as a complex coefficient polynomial. Hence [AA — I| always has n roots (possibly
complex numbers) if each root is counted up to its multiplicity.

In this course, we will only consider matrices over R. But from now on, when we talk
about eigenvalues of a matrix A, even if A is real, we consider A as a complex matrix and
allow its eigenvalues and eigenvectors to be complex. From above analysis, we can always
write det(A — A) = [[i_,(A — A;). Thus A is an eigenvalue of A if and only if A = \; for
some 4. In other words, A, --- , A, are all the eigenvalues of A and it is possible that A\; = A;
for some i # j.

As an simple application of this result, we can have another characterization of when A

is invertible.

Theorem 7.1.1. Let A be an n X n matrix and Ay, --- , A\, be the roots of its characteristic

polynomial. Then
[T) = det(4)
i=1

Therefore A is invertible if and only if A does not have 0 eigenvalue.
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Proof. Since det(A — A) = [[;_;(A — \;), evaluating at A = 0 on both sides yields

= Al= )T

=1

But the left hand side is (—1)" det(A). Hence det(A) =[], ;. O

7.2 Vectorization and Continuity (Optional)

Let A, B be two m x n matrix. Then the vectorization of the matrix is

T 1 a
A= a - a, |, vec(A)=|:
ol a,

(mn)x1

where A is a matrix. We can define a distance metric for matrices based on the Euclidean

norim.

d(A, B) = ||vec(A) — vec(B)||

Definition 7.2.1. Define ®(L,n) be a collection of sets. Each set o € ®(L,n) selects L

indexes or less from {1,...,n} (possibly repeating indexes).

The size of the collection ®(L, n) is finite because there is a finite number of permutations

of the indexes.

Definition 7.2.2. . A function f : R" — R is a finite multivariate polynomial if there exists

a finite L such that f can be expressed as

flz) = Z %ka, Yo € R forall o € ®(L,n)

oc€®(L,n) keo
we say that L is the order of the polynomial.

For example, f(x) = a1 + x125 + 2323 is a multivariate polynomial of order 5. Because
polynomials are expressed as a finite addition and multiplication of elements in the vector

x € R", finite polynomial functions are continuous.

Lemma 7.2.1. Let A be a nxn matriz. Then det(A) = f(vec(A)), where f is a polynomial

of order n in the entries of the matrix.
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Proof. The proof procedes by induction. If n = 2 then, det(A) = aj1a92 — ajpas; which has
a polynomial of order L = 2. Suppose that the determinant of every n X n matrix can be
represented as a finite order polynomial of order n. We will show that this also holds for
n+ 1.

n+1
det(A) = Z(—l)lﬂaljdet(fllj)
=1
n+1
= Z 1)'"*ay; Z Yjo H Wiy i Substituting Def. Polynomial

c€®d(n,(n+1)2) keo

n+1
= Z Z (_1)1+j7jo (alj H aik,jk> Distributing Terms
)?)

J=1 g€ (n,(n+1)2 keo

n+1
- Z Z i (alj H am,n) Exchanging Order of Sum

ced(n,(n+1)2) keo
n+1
= Z Vo i H @iy gy, Substituting v, = Z(—l)lﬂ%ja_
o€®(n,(n+1)2) keo j=1
= Z Yo H Wi j), Adding One More Term to Product

ced(n+1,(n+1)2) keo

In Line 2 we substitute the fact that det(A;;) is a polynomial of order n that select elements
from vec(A), which has (m + 1)? elements. The third line groups together the coefficients
and elements of the matrix that multiply each other.

O

We can always write a matrix in a vectorized form. That means that we can change the

domain of the determinant to be R™.
Lemma 7.2.2. The function det : R™ — R is a continuous function.
Proof. Use Lemma 7.2.1 and the fact that multivariate polynomials are continuous. O

This leads to an interesting result. If a matrix is full rank, then “small” perturbations
of the entries of a full rank (invertible) matrix preserve invertibility of the matrix. In other
words, invertibility is not a "knife-edge” case. This is particularly important in settings where
a matrix is estimated with uncertainty. It is also possible to show a similar characterization

for positive definite matrices.

Corollary 7.2.1. The set of full rank n X n matrices is an open set under the vectorized

Fuclidean norm.
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Proof. Since the determinant is a continuous function that implies that the pre-image of
every open set is an open set. Let A denote the set of n x n full rank matrices, which can

characterized by matrices with a non-zero determinant.
A = {vec(A) € R : det(A) # 0}

The set U = R\{0} is an open set, therefore the pre-image det™'(U) is also an open set,
using the vectorized Euclidean norm. That means that the set of square full rank (invertible)

matrices is an open set. L]

89



7.3 Exercises

A matrix B, ., is positive definite if Vo € R", 27 Bz > 0. An equivalent definition of positive

definiteness can be formulated using the determinant:

b11 bnl
B=1|.. .. ..
b1 - ban
Define the leading principal minor k of B, as the matrix formed by taking the upper left

(k x k) submatrix. In other words:

bll b12

By =
b?l b22

By = |b) . Bs =

A matrix is positive definite if and only if Vi € {1,...,n},det(B;) > 0. (Take this as a

given, you do not need to prove it).

1. Define a function F' : M,«, — R". F(B) = (det(By),....,det(B,)). Reformulate the

definition of positive definiteness in terms of F'(B).

2. Define a metric for the distance between two matrices, d(A, B). Show that it is a

metric: that it is non-negative, symmetric and satisfied the triangle inequality.
3. (Optional) Show that the function F'(B) is continuous.

4. (Optional) Show that the set of positive definite matrices of size (n) is an open set in

Mn.

Remark This shows that under small perturbations in the components of a positive

definite matrix, the resulting matrix preserves the property of positive definiteness.
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Chapter 8
Eigenvalues and Eigenvectors

The techniques we have studied so far allow us to solve static linear equation systems. In some
applications it is useful to analyze the properties of recursive operations on matrices, which
naturally arise in dynamic systems. The most useful concept in this area are eigenvalues

and eigenvectors.

8.1 Review of Complex Numbers

A complex scalar a € C has the form a = ar + a;yi where ag, ary are real numbers and

i =+/—1. Every complex scalar has a complex conjugate, which we define @ = ap — ari.
Properties 1. The complex conjugate satisfies:

(a) a=a, if and only if ajpr = 0.

(b) ab= ab.

(c) aa=a%+a%, >0.

(d) aa =0 if and only if a = 0.

Let = be a complex vector. Let A be an m x n matrix with complex entries. The
conjugate of a matrix is the conjugate of the individual entries. Then we can define matrix
multiplication analogously to the real numbers. We will also define the conjugate transpose,

also known as the hermitian matrix.

Definition 8.1.1. Let A be an n x n matrix with [a;;] € C. Then the matrix A? is the

Hermitian matrix of A if [a]]] = [a;i].
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The hermitian matrix transposes the matrix and then finds the conjugate transpose of
each entry.
We can define the image and the kernel in the complex numbers as well. Let A be an

m X n matrix with real entries, then the image and kernel are,
Im(A)={z€C":z= Az, x € C"}

Ker(A) :={z € C":0,,x1 = Az, z € C"}

Remark: The identity matrix spans the complex plane, that is Im(I) = C". Therefore,
using the same proof as Lemma 2.2.2 (which did not rely on the entries being real or complex)
then full rank matrices have at most m columns. If a full rank matrix has n = m complex-

valued columns, then it is invertible.

8.2 Eigenvectors and Eigenvalues

Definition 8.2.1. Let A be a n x n real matrix. If there exists a non-zero vector v € C"
and a complex scalar A € C such that Av = Av, then we call A is an eigenvalue of A, and v

is the (right) eigenvector with corresponding eigenvalue A.

Lemma 8.2.1. Let A be an n x n matriz. Suppose that v € C*"\{0,x1} are eigenvectors

with corresponding eigenvalues X € C, then:
1. If A\=0, then A is not full rank.
2. A%v = N, for all positive integers s.

3. The vector U is also an eigenvector of A with associated eigenvalue \.

Proof. The proof has three parts:

1. Suppose that A = 0 and that v is a non-zero vector. Then v € Ker(A). That means
that Ker(A) # {0,} and therefore A is not full rank.

2. The relationship holds for ¢ = 1 by definition. Suppose that it holds for Step ¢. Then
for Step ¢ + 1, then A™x = AA'z = A(Nwv) which is equal to AX'Av = A1,

3. If Av = Av, then we can apply the conjugate transpose. Since A has real entries,
A = A, which means that Av = Av = A\v. Therefore ¥ is also an eigenvector of A with

associated eigenvalue .

]
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8.2.1 Linear Independence and Diagonalizability

Definition 8.2.2. The vectors of m x n matrix A with complex entries are is said to be

linearly independent if and only if Ker(A) = 0,x;.

We can use this definition to show that the eigenvectors associated with distinct eigen-

values are linearly independent.

Theorem 8.2.1. Let A be an n X n matrixz. Assume \q,--- , N\, are distinct eigenvalues of

A and x1,--- ,x, are associated eigenvectors. Then x1,--- ,x, are linearly independent.

Proof. We show this by induction on r. When r = 1, this trivially holds because x; # 0.
Assume 7 = k < n and any set of k eigenvectors associated with distinct eigenvalues are
linearly independent. Let r = k+ 1. Assume xy,--- , x4 are eigenvectors corresponding to

different eigenvalues Ay, - -+, Agyq. If
(%) 1y + 0+ Cp1Trgr = Ot
Then we can derive two new sets of restrictions:

0,1 = Cl)\k+1$1 + -+ Ck:-i—l)\k—i—lxk:—i—l =0 Multiplying (*) by )‘k+1
Omx1 = Az + - + 1 AT Left-Multiplying () by A

The last equation can be written as c;A\1x1 + codoxy + -+ - + Cpr1 A pr1Tk11 = 0. Combining

the two equations, we have that
Cl<)\k+1 - )\1)381 + 02(>\k+1 - )\2)$2 + -+ Ck<)\k+1 - Ak)mk = 0.

By induction assumption, ¢;(Axr1 — A;) = 0 for all 1 <4 < k. Since \’s are distinct, this is

equivalent to ¢; = 0 for all 1 <7 < k. Lastly, from (%), we know ¢4 = 0 since xp1 #0. O

Definition 8.2.3. Let A be an n x n matrix and let A be a diagonal matrix of eigenvalues.

Then the matrix A is said to be diagonalizable if there exists an n x n full rank matrix B
such that A = BAB™!.

Lemma 8.2.2. Let A be an n x n matriz. If A is diagonalizable, then A® = BA*B~! for all

positive integers t.

Proof. The relationship holds for ¢ = 1. Suppose that it also holds for Step ¢t. Then for
Step (t + 1) O
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Theorem 8.2.2. Let A be an n X n matriz. A is diagonalizable if and only if A has n

linearly independent eigenvectors.

Proof. <= Let B be a matrix whose columns are eigenvectors of A, which we denote b;.
Then Ab; = \;b; for j € {1,...,n}. We can express this in matrix form as AB = BA, where
A is a diagonal matrix with );’s on its diagonal. Since B is full rank, then A = BAB™'.
= Suppose that A is diagonalizable and A = BAB™!. Then we can reverse the steps
to show that AB = BA and Ab; = \;b;.
O
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8.2.2 Symmetry

Matrices are guranteed to have real eigenvalues and eigenvectors when they are symmetric.

Theorem 8.2.3. If A is an n x n symmetric real matriz. Then all its eigenvalues are real.

Moreover, for each eigenvalue X\, there exist real eigenvectors.

Proof. Let A be an eigenvalue of A and x # 0 be a corresponding eigenvector. Then

Ax = Ax. Hence the conjugate transpose is equal to:

ol = T'Ax
= (A7)'x
— Az'z

= \T'z

Since Tz # 0, we have A = . That is A is real. Moreover, suppose that z € C where
x = a+ bi. Then by Lemma 8.2.1 the vector z = a — bt is also an eigenvector associated
with A = \. Because eigenvectors are non-zero, then either a # 0 or b # 0. Let us consider

each case separately:

1. If a # 0. Then define z = x +Z = 2a. Then Az = A(x + ) = Az + Az, which is equal

to AM(z + ) = Az. Therefore, z is a real non-zero vector such that Az = Az.

2. If b # 0. Then define z = i(x — Z) = —2b. Then Az = iA(z — z) = i(A\x — A\T) = Az.

Therefore, z is a real non-zero vector such that Az = \z.

The spectral theorem shows that every symmetric matrix is diagonalizable.
Definition 8.2.4. An matrix m X n matrix is orthogonal if A*A = I.
Notice that orthogonal matrices satisfy the property that A* = A~1.

Theorem 8.2.4 (Spectral Theorem). Let A be an n X n symmetric matriz. There exists
an orthogonal matriz Q such that A = Q'AQ where A is a diagonal matriz whose diagonal

components are eigenvalues of A.

Proof. We only need to show A has n orthogonal eigenvectors. Let A\ = max, = v Av
and vy € argmaxj,|=1 v’ Av. Define W; = span{vi} = {c1v1]c; € R"}. We show ); is an

eigenvalue of A and v; is a corresponding eigenvector. Notice if we know Av; = cjv; for
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some ¢; and A\ = vlTAvl = clvlTvl = ¢; showing \; is indeed an eigenvalue. Hence we only
need to show Av; € W;. We show this by showing Av; L Wit For any arbitrary w € Wi,

we know
U1 + aw V1 + aw

lor +awl — \/T+a[w]?

is a normal vector for any a € R. Hence by definition of v;, we have

1
>
— 1+ a?fwl|?
vl Avy + 2a0vT Aw + a*w? Aw
1+ a?||wl?

vl Avy (v + aw)T A(vy + aw)

for all @ € R, where the equality comes from the assumption that A is symmetric. But
for this inequality to hold for all a, we must have v Aw = 0 otherwise we can always find

arbitrary small a such that this inequality is violated. Since w € Wit is arbitrary, we showed
AUl € Wl-

Suppose we have defined vy,--- ,vp and Ay, --- , A\g. Let
TA
Uky1 € arg max v Av,
UESpanL{Ul,“' UK}
lloll=1
App1 = max v’ Av

vespant {vy, - v}
[lv]|=1

and Wy = span{vg,1}. Then we can apply the same logic to show that Avg,; € Wy and

thus Aviy1 = A\pr1vke1. Since this is finite dimensional, we can complete this process when

k = n. This completes the proof. O

96



8.3 Exercises

Let P be an n X n matrix. Define a stochastic matrizx P as an n X n matrix that has non-

negative entries where the entries of each column sum to one. Let 7 be a non-negative vector

whose entries sum to one. Show that m does not belong to the kernel. Further show that

P is a vector whose entries sum to one

1. This questions studies the convergence properties of stochastic matrices:

(a)

(3 points) Now suppose that lim,, ,,, P™ — P*. Show that P* is also a markov
matrix and show that m does not belong to its kernel. (Hint: Show that every P™

is markov).

(5 points) Suppose that P* is such that for every 7, P*r = #*, for a fixed 7*.
Write down what the matrix P* has to be for 7* = (0.2,0.3,0.4,0.1) if P* is 4 x 4.

(2 points) Construct an example of a 2 x 2 symmetric matrix P that doesn’t
converge. (Hint use zeros and ones only). Compute its eigenvalues. Use the

spectral decomposition to give a reason why it doesn’t converge.

(3 points) Show that the following asymmetric P converges to a P* such that

p_ 05 0
05 1

P*m = 7*. Compute P* and 7*.

2. This questions asks you to analyze the eigenvalues of stochastic matrices:

(a)
(b)

(3 points) Let v € R™. Show that the entries of the vector Pv add up to >~

j=1 Uj.

(9 points) Let v* € R"™, v # 0 be an eigenvector of P, with corresponding eigenvalue
A. Prove the following statements:

i. (1 point) P*v* = X\*v* s € N.

ii. (4 points) Show that if ", v¥ # 0, then A = 1. [Hint: show that P* is also

Jj=1"J
markov].
iii. (4 points) Show that if 37, v5 = 0,v* # 0, then [A] < 1. [Hint: show that

for any fixed v # 0 (not necessarily an eigenvector), supp ||Pv|| < M < oo, P

markov].
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Part 11

Differentiation
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Chapter 9

Introduction to Differentiation

9.1 Review of Convergence

Recall the definition of convergence from the first part of the course:

Definition 9.1.1. Let f : [a,b] — R, be a real-valued function, p € [a,b]. We write f(z) — ¢
as x — p or lim,_,, f(z) = ¢ if there exists ¢ € R with the following property: Ve > 0 there
exists 0 > 0 such that:

|f(x) —ql <€, Voe(p—0,p+0)Nfa,b], z#p

Definition 9.1.2. lim,, f(z) = ¢ if 3¢ € R such that Ve > 0,30 > 0 such:

[f(x) =gl <& Vz e (pp+06)Niab\{p}

The following theorem gives four different characterizations to the definitions above:

Theorem 9.1.1 (Equivalent Limit Definitions). Let f : [a,b] — R, be a real-valued function,
p € [a,b]. The following are equivalent:

1. lim,_,, f(z) =¢
2. limy, o0 f(xn) = q, for every sequence {x,}2,, x, # p such that lim, o T, = p
3. limg, f(z) = limgy, f(2) = ¢

4. limy, o f(xF) = lim, o f(x,) = q, V{z,}}22,, V{x, }22, such that z} > p > x, and

x, x> converge to p.

ni»rn
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5. lim,_,, |f(z) — ¢/ = 0.

These equivalences are proven in the Appendix. They will be very useful when we want

to show whether a function is differentiable or not. This will become clear soon.

Definition 9.1.3. The function f is continuous at some point ¢ of its domain [a, b] if

lim f(z) = f(c).

r—c

Theorem 9.1.2 (Change of Variable). If there ezists ¢ € R such that lim,_,,, h(y) = q and

f(xo) =yo and f is a continuous function, then lim, .., h(f(z)) = lim,_,, h(y).

Proof. Let z,, € R be a convergent sequence such that z,, — zo. Then y, = f(z,) is a
convergent sequence because f is continuous (using the second definition), which converges

to yo = f(xo). If lim,_,,, h(y,) = ¢ that means that for every sequence y,, such that y,, — o,
limy, y, A(yn) = ¢. O

9.2 Definition of Differentiability

Definition 9.2.1. Let f : [a,b] — R, be a real-valued function. We say that f is differen-

tiable at xg € [a, b] if the limit:
L )~ T

T—T0 r — 29
exists and is finite. We denote it by:

o) = Tim L) =)

T—T0 T — Ty

and say that f’(x¢) is the derivative of f at zq. If f is differentiable at every x € [a, b, we
say that f is differentiable.

Given Theorem 9.1.1 we can characterize the derivative of a function as:

Theorem 9.2.1. Let f : [a,b] — R, be a real-valued function, xy € |a,b]. The following are

equivalent:

1. f is differentiable at xo, with derivative f'(xq)

flen)—f(@0) _ F(

Tp—XT0

2. limy, 00 xo), for every sequence {x,}2 ), xn # X0,

such that lim,,_, T,, = To
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f(@)—f(z0)

T—x0

f@)—f(zo) _ 7(

3. limg |, = limgpg, =3 xg)

9.2.1 Examples

The following example computes the derivative of some common functions and shows some

functions that are not differentiable.

Example 6. 1. Let c€ R and f(x) =c. Then f'(x) =0,Vz € R.
2. Letn>1 and f(z) = 2". Then f'(x) = nz" '
3. Let f(x) =¢e*. Then f'(x) = €.
4. f(x) = |z| is not differentiable at x = 0.

z-sin(2)  ifx#£0

5. f(x) = is not differentiable at x = 0.
0 ifr=0
Proof.
1. f(x)=c
f'(zg) = lim f(x) = o) — lim — % =9
T—x0 r — X9 z—=x0 T — X
2. f(z)=a"
f@) = flzo) = 2" — a5
= (x—x0) (" T+ 2" P+ 2" Py + . b2l 2l
n—1
= (v —x0) Y aFapF!
k=0
Then,

n—1
f/(xo) = hm M — ll)m Zxkxg,—k—l
% k=0

T—T0 T — X

n—1
_ k_n—k—1
= Z%%
k=0
n—1
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f@) = flao) _ e —en

T—rxQ T — l’o x—x0 L — ,CL‘O

] er—To _ 1
= " lim —
T—rT0 T — :['0

et —1
= " (hm >
r—0 x

Recall the definition of e,
N K 1/y
e: gl/m(l)(l + )

Using the continuity of log at 1,

; 1/y ; 1

lim log(1+y)/Y =lim —log(l+y)=1
y—0

y—0 Yy

Using the continuity of 1/z at 1,

Defining x = log(1 + y),

lim &1 g
z—0 x
Thus,
_ T _ 1
f(zo) = lim f(z) = J(xo) =e" (hm ¢ ) =™
r—xQ T — X z—0 x
L (@) = Jaf

We prove it using the characterizations given by Theorem 9.2.1:

i 1O TO) _ 4y, 1) 10)

xlxg X ztxo

Given that the limits from above and from below are not equal to each other, the

function is not differentiable at 0.

z-sin(L) ifz#0
0 ifx=20

5. () =
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X

T i

f) = f(0) _asin}) _ (1)

1
2nm

Consider the sequences x,, = and v, = n € N. They both converge to 0.

D S
2nm+m /27
sin(1/x,) =sin(2nm) =0, neN

sin(1/y,) =sin(2nr +7/2) =1, neN

By Theorem 9.2.1, f is not differentiable.

Below lists several useful differentiation rules without proof.

Theorem 9.2.2. Suppose f,g : [a,b] — R, be real-valued functions, differentiable at x¢ €
la,b] and k € R. Then:

1 (kf)(xo) = kf'(xo)

2. (f+9)'(x0) = f'(w0) + ¢'(20)

3. (f - 9) (x0) = f'(w0)g(wo) + f(0)g'(x0)

4. if g(z0) # 0, then <§>' (o) = Llstan)= a0

Proof. See ( ) O

Example 7. Let n > 1 and f(x) = a2™. Then f'(z) = nz""'. Here we provide an easier

proof using the product rule.

Proof. By induction. For the base case, n = 1:

T —Xo _
=1=nap*

o) =, Fl(x)= lim

z—=x0 T — Xy

Assume it holds for n = k:
fla)y=a* f(xo) = kaf™

For n =k + 1:

flz) =2t =g . 2"

103



Using the product rule in Theorem 9.2.2,

fw) =1 -2 + 2 kab™ = ab + kak = (b + 1)}

9.3 Differentiability Implies Continuity

The following theorem states the relationship between continuity and differentiation of a

function.

Theorem 9.3.1. Let f : [a,b] — R, be a real-valued function, differentiable at zo € [a,b].

Then f is continuous at x.

Proof.
f@) = J@)+ fao) — fwo) 9.1)
= flxo) + <w> (x — x0) (9.2)
Taking limits when z — o,
I () = f(ao)+ m (%) (& — x0) (9.3)

Given that lim,_,,, (M) exists and is finite and lim,_,,, v — xo = 0,

r—x0

= lim f(z) = f(zo)

T—T0

]

Note that the converse of this theorem is not true. That is, if a function f : [a,b] — R is
continuous at some point g € [a, b], it need not be differentiable at that point. For example,

the function

fa) = - sin(1) %fx;«éO
0 ite=20

is continuous at 0, but is not differentiable at that point. Here is another simpler example.

f(x) = |z| is continuous at = = 0 but not differentiable at x = 0.
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9.4 First Order Conditions

Definition 9.4.1. Let f: A — R, where A C R.
1. zg € A is a global maximum of f if f(xo) > f(z), Vre A
2. zg € A is a global minimum of f if f(zo) < f(z), Vxe A
3. zg € Aisalocal maximum of f if 3§ > 0such that f(zo) > f(z), Vze€ AN (zg— 05,20+ 0)

4. xg € Aisalocal minimum of fif 3§ > 0 such that f(xo) < f(x), Ve e AN (xg— 9,20+ 90)

Theorem 9.4.1. Let f : [a,b] = R. If f has a local mazimum (minimum) at xy € (a,b)
and f is differentiable at xo, then f'(xo) = 0.

Proof. Let f have a local maximum at z € (a,b). Then, there exists a 6 > 0 such that:
o For all x € (xg, 20 +90):

f(x) — f(zo) f(x) — f(xo)

<0 = lim <0
T — g zdxo T — X
o Forall z € (xg — 6, x0):
f(if)—f(ﬂ?o)zo :>limf($)_f(x0)20
xr — Xg ztzo T — X

The limits exist, given that f is differentiable at xy. By Theorem 9.2.1,

0 < /(o) = lim L& =@

T—T0 T — X

<0

]

Comment 1. The reserve is not true. A counterexample is f(x) = z3. Note that
f'(0) = 0 but 0 is not a local maximum or minimum.

Comment 2. The assumption of differentiability is important. If we drop the condition
on differentiability, the result is no longer true. A counterexample is f(x) = |z|. Note that 0
is indeed a local minimum (actually a global minimum) of f(z), but the derivative at x =0

is not zero, simply because it is not even differentiable at x = 0.
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9.5 Intermediate Value Theorem

Theorem 9.5.1 (Intermediate Value Theorem for Derivatives). Let f : [a,b] — R continuous
and differentiable on [a,b]. If f'(a) < XA < f'(b), there exists x € (a,b) such that f'(z) = \.

Proof. Let A such that f'(a) < A < f/(b). Define g(t) := f(t) — At. Then:

gt)=rt)—A 4()<0, g >0

This means that ¢ is decreasing on a and increasing on b, so we can find z1,z5 € (a,b)
such that g(z1) < g(a) and g(z2) < g(b). Thus, g attains a minimum at some x in the
interior of [a,b]. By Theorem 9.4.1, ¢’(x) = f'(x) — A = 0. Then:

F'(r) = A

]

Comment. It is incorrect to invoke the intermediate value theorem for continuous
functions. This is because derivatives are not necessarily continuous. For example, the

function:

Fa) = 2? - sin(1) %f:c #0
0 itz =0

is differentiable at every point (notice the difference with a similar example discussed previ-
ously). However, the derivative is not continuous at 0. Although we cannot claim that the
derivative of a function is continuous, derivatives and continuous functions have something

in common: they take on all the intermediate values.
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9.6 Chain Rule

Theorem 9.6.1 (Chain rule). Let I and J be two intervals in R. Let f : I — R and
g:J =R, f(I) C J. If f is differentiable at xy € I and g is differentiable at f(zo) € J,
then:

(g0 f)(w0) = g'(f(x0)).f (o)

Proof. Define the residuals for x # xq, y # yo:
r(z;20) = f(x) — f(20) — f'(0)(z — T0)

u(y;y0) = 9(y) — 9(vo) — 9" (o) (¥ — wo)

By the definition of differentiability of f and g:

fz) = (o)

T — 2o

r(z, xq)

- o] =0
r—x0 T — xo T—T0

lim = lim [

i “@im0) {g(y) —9(yo) f/(y())} _0

y=y0 Y — Yo Y—Yo Y — Yo

Before we take limits, we rewrite the expression for the slope of (go f)(xg). Let y = f(x):

g(f(x)) —g(f(xz0))  9(y) — g(vo)

(x — z0) (v — )

_ 9 (o) (y — o) + u(y; vo) Rewriting u(y: yo)

Factorizing (y — o).

uy; o) | (F(x) — f(x0))

= g (o) + =) (= 10) Substituting y = f(x)
| u(y; yo) | { , r(z; xo)} writing (-
= 19 (yo) + =10 I (zo) + pr— Rewriting r(x; xo)

This means that overall slope of (g o f) between xy and x is equal to the multiplication

of the slope of g between 1y, and y times the slope of f between xy and z. We can take limits
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on both sides:

i I @) = g(f(@0)) _ {g/(yo) +

T—x0 ({Ij — ;UO) T—x0

—10)) 20 {f (@) +

T—T0

T — 2o

In order to distribute the limits we need to show that the individual limits exists and are

finite, using the property that we used for r(x; zo) and u(y; yo).

r(z; ZL‘O):| — flzy) + lim [T‘(w; 7o)
T — X r—=ro | T — X

lim [f/(xo) +

T—rxT0

} = f'(zo)

_ u(y; _ u(y;
i o)+ 22200 — )+ i [ 2] )
T—T0 y — yo T—T0 y — yo
The last result follows by using Theorem 9.1.2; setting h(y) = % Therefore lim,_,, [%] =
limy, ., [%] This completes the proof, because it shows that:
. g(f(x)) —g(f(x0)) / ' ' /

1 = —
ting P =IO g4 ) = ) )
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9.7 Properties Appendix: Equivalent Notions of Con-
tinuity

Definition 9.7.1. Let f : [a,b] — R, be a real-valued function, p € [a, b]. We write f(z) — ¢
as x — p or lim,_,, f(z) = ¢ if there exists ¢ € R with the following property: Ve > 0 there
exists 0 > 0 such that:

f(x) —ql<e, VYxe(p—0,p+0)Nab], z#p

Proof. 1. We will prove (1) < (5).

Suppose that for every € > 0 there exists 0 > 0 such that :

[f(x) —ql <& Ve e(p—04,p+0)Nfabl,x#p
Since |f(x) —q| = | |f(z) — ¢q| — 0], the two notions of convergence are equivalent.

2. We will prove that (1) < (2).

= Suppose that lim,,, f(z) = ¢q. We will show that every sequence needs to

converge.

Suppose that not every sequence f(x,,) converges to ¢ : I{x, }22, T # p, T, — p such
that J3e > 0 s.t. VN € N,3n > N such that d(f(z,),q) > €. However, we also know
that Ve > 0,3 > 0 such that d(f(x),q) < eforall x € (p—9, p+9d)N[a,b]\{p}. Because
x, convergent, we know that for very large n, z,, must be contained in (p — d,p+ ) N
[a,b]\{p}. This means that d(f(z,),q) < € for large enough n. This contradicts the
assumption that not every sequence f(x,) converges to q. Therefore, we have shown

that every sequence must converge to q.

<= Suppose that it is true that if z,, — p then lim,,_,, f(z,) — ¢. Now we will show
the € — § definition holds.

Suppose that the either lim,_,, f(x) does not exist, or it does not converge to ¢. Then
Jde > 0 such that V§ > 0,3z € (p—0,p+0)N[a,b]\{p},d(f(z),q) > e. This means that
if we set 0 = 0, = 1/n we can choose an choose x,, such that d(f(z,),q) > €. Because
op — 0,2, — p, x, # p. However, because every f(x,) converges to ¢, for large n then
d(f(xn),q) < e. This generates a contradiction with how z,, was defined. Therefore,

lim,_,, f(z) must exist and be equal to g.

3. Now we will prove (1) <= (3).
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= Suppose that if lim,_,, f(z) = ¢. Since (p,p+9) C (p—9,p+0) it always follows
that 30 > 0 such that d(f(x),q) <, for all x € (p,p+ ) N [a, b]\{p}.

<= If lim,y, f(z) = lim,, f(z) = ¢, then Ve > 0,301, 2 > 0 such that:
d(f(z),q) <€ Vx € Vi=(p,p+01)Nla,b\{p}

d(f(x),q) <€ Vo e Vo= (p—30,p+d2)Nla,b\{p}

Then set * = min{d;,d2}. Then V* = (p—6*,p+6*)N[a,b]\{p} C ViNV;. Therefore,
d(f(x),q) < ¢,V € V*. This completes the proof.

. Now we will prove (2) <= (4).

— Suppose that it is true that if z,, — p then lim,,_,,, f(x,) — ¢. Then since z;\ ad
x,, are special cases of this type of sequence, then lim, o f(2;}) = lim, o f(z,) = ¢.
<= Now suppose that lim, . f(z;}) = lim,_ f(x,) = ¢ for all z;} and z,. Let z,
be an arbitrary convergent sequence (with values potentially above and below p). Now
construct two sub-sequences f(z; ) and f(z;"), that separate the terms in z, that are
below and above p, respectively. You start off with the first element in x,,, if it is below
p assign it to x,,, otherwise to z;". Repeat this process for all x,, in order to construct
a sequence. That means that Ve > 0, 3N; such that VYn > Ny, d(f(z,,,q)) < € and 3N,
such that Vn > No, d(f(x}),q) < €. Let N* > N1+ N,. Then Vn > N*, d(f(z,),q) < €.
Since we found an N* for every € > 0, then f(x,) must converge to gq.

]
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9.8 Exercises

x%sin(l/z) x #0 ‘ . .
1. Let f(z) = . For what values of a is f(z) differentiable at z = 07
0 x=0
2. Let f,g: R — R be two functions. Let yo = g(z) for some zy € R. Find examples for
the following cases when:
(a) g is differentiable at xy and f is not differentiable at yo;
(b) ¢ is not differentiable at z¢ and f is differentiable at yo;

(c) g is not differentiable at xy and f is not differentiable at yq,
but f o g(x) is differentiable.

3. (Exercise 11 on page 186, Pugh) Assume that f : (=1,1) — R and f/(0) exists. If
Qn, B — 0 as n — 00, define the different quotient

f(Bn) = flan)

571_0%

D, =

(a) Prove that lim,,_,., D, = f’(0) under each of the following conditions (Hint: First

f L8 ”;;f © and £ (O‘”C)w:f © and use the sequential

rewrite this expression in terms o
definition of the limit.
i a, <0<p,.
ii. O<an<ﬁnandﬁf_ﬁ§M.
iii. f’(z) exists and is continuous for all x € (—1,1).
(b) Set f(z) = z*sin(1/z) for x # 0 and f(0) = 0. Observe that f is differentiable
everywhere in (—1,1) and f'(0) = 0. Find «, and §, that tend to 0 in such a

way that D,, converges to a limit unequal to f’(0).
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Chapter 10

Mean Value Theorems

10.1 Mean Value Theorems

Theorem 10.1.1 (Rolle’s Theorem). f : [a,b] = R continuous on [a,b] and differentiable
n (a,b). If f(a) = f(b), then there exists x € (a,b) such that f'(x) =0

Proof. Define

x1 = argmin f(z), m = min f(x)
z€[a,b] z€(a,b]

o = argmax f(z), M = max f(x)
z€[a,b] z€[a,b]

o If m= M, fis constant and f’'(z) = 0,Vx € [a, b

o If m < M, at least one of x; or xy is different from both a and b, given that f(z;) <
f(x9) and f(a) = f(b). Without loss of generality, assume z; € (a,b). By Theorem
9.4.1, f'(x1) = 0.

]

Theorem 10.1.2 (Cauchy’s Mean Value Theorem). Suppose f, g : [a,b] — R are continuous
and differentiable on (a,b). There exists xy € (a,b) such that

f'(0)(g(b) — g(a)) = ¢ (o) (f(b) — f(a))

Proof. Define h(t) := f(t)(g(b) — g(a)) — g(t)(f(b) — f(a)). h is continuous on [a,b], dif-
ferentiable on (a, b) and h(a) h(b). By Rolle’s Theorem (Theorem 10.1.1), there exists an
xo € (a,b) such that h'(zy) = 0. This happens if, and only if,

f'(0)(g(b) — g(a)) = ¢'(20)(f(b) — f(a))
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O]

Theorem 10.1.3 (Mean Value Theorem). Suppose f : [a,b] — R is continuous and differ-
entiable on (a,b). There exists xog € (a,b) such that

f(b) = f(a) = f'(x0)(b — a)
Proof. Set g(z) = = in Cauchy’s Mean Value Theorem (Theorem 10.1.2). O

Corollary 10.1.1. Let f : [a,b] — R is continuous, differentiable on (a,b) and

sup |f'(z)] < M

z€(a,b)

Then,
|f(z) = f(@)] < M|z — 2|, 2" € [a,b]

Proof. Let z,2' € [a,b],z < 2/. By Mean Value Theorem (Theorem 10.1.3) there exists
¢ € (x,2') such that f(x) — f(2') = f'({)(x — 2), and hence

() = F@O] = (O =2) = [f(OI - [z = 2| < Mz — 2|,
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10.2 L’Hospital’s Rule

Theorem 10.2.1 (L’Hospital’s Rule). Suppose f and g are differentiable on (a,b), ¢'(z) #
0,Vx € (a,b), where —oo < a < b < oo. Suppose:

)
iﬁa g’(gj) A

, —0o<A<o0

If either:

1. lim,, f(z) = lim,_, g(z) =0, or

2. lim, ., f(x) = lim,, g(z) = 00
f(z)

Then, lim,_,, % =

Q
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10.3 Derivatives of Monotone Functions
Definition 10.3.1. Let f: I — R. If for all 1,25 € I s.t. 1 < X9,
1. f(x1) < (>)f(x2), we say that f is monotonically increasing (decreasing).

2. f(z1) < (>)f(x3), we say that f is strictly monotonically increasing (decreasing).

The next theorem characterizes monotonic functions in terms of their derivatives:
Theorem 10.3.1. Let [ : [a,b] — R continuous and differentiable on (a,b).

1. f is increasing on (a,b) <= f'(x) > 0,Vz € (a,b)

2. [ is decreasing on (a,b) <= f'(x) <0,Yx € (a,b)

3. f is strictly increasing on (a,b) if f'(x) > 0,Vx € (a,b)

4. [ is strictly decreasing on (a,b) if f'(x) < 0,Vx € (a,b)

Proof. 1. =: f is increasing = for all z < 2/, W > (0. Taking limits:
/ p—
Fla) = tim L) =@

x|z T —x

<: f'(z) > 0forall z € (a,b). Let 21 < x9. By the Mean Value Theorem, there exists
¢ € (x1,x5) such that:

fx2) — f(z1) = f()(w2 —21) > 0

Then, f(z2) > f(x1).
2. Analogous to 1.

3. f'(z) > 0 for all © € (a,b). Let x; < z5. By the Mean Value Theorem, there exists
¢ € (x1,x2) such that:

f(@e) = fz1) = () (w2 —21) >0

Then, f(xs) > f(z1).

4. Analogous to 3.
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Note that 3. and 4. go only in one direction: if the derivative is strictly positive (neg-
ative), the function is strictly increasing (decreasing). However, a function that is strictly
increasing (decreasing) does not necessarily have strictly positive (negative) derivative at
every point in the domain. An example of such a function is f(x) = z®. In this case, f is

strictly increasing, although f’(0) = 0.

10.4 Inverse Function Theorem

Theorem 10.4.1 (Inverse Function Theorem). Let f : (a,b) — (¢, d) be surjective, contin-
uous and differentiable on (a,b), and f'(x) # 0,Vx € (a,b). Then f is a homeomorphism

and its inverse f~1 is differentiable, with:

Proof. If f'(x) # 0,Vx € (a,b), by the Intermediate Value Theorem for Derivatives, f'(z)
is either positive for all z € (a,b), or negative. Assume, without loss of generality, that
f'(z) > 0,Vz € (a,b).

Let a < 27 < 29 < b. By the Mean Value Theorem, there exists ( € (z1,x2) such that:

f(@2) = f(21) = ()2 —21) >0

Then, f is strictly monotonically increasing, so it is injective. Since, by assumption, it is
also surjective, its inverse f~! exists and is well defined. Moreover, since f is differentiable,

it is continuous on (a, b).

Now, lets prove that a strictly monotonic and continuous function is a homeomorphism.
Let yo € (¢,d) and € > 0. Denote xo = f~!(yo) and define y~ = f(zg—¢) and y* = f(xo+e€).
Let 0 = min{|y™ — yol, [y~ — vol}-

Since f is monotonic, f~! is also monotonic, so [~ (yo+0) < xo+€, [ yo—0) > wg—¢
and f~!(yo — 6,90 + 0) is an interval. Moreover, f is continuous, so f~!(yy — &, 4o + 0) is an
open set, which means that f~'(yo — 6,90 + ) C (zo — €, 29 +€), so f~1 is continuous and f

is a homeomorphism.
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Now, lets show that:

) = Jim == (10.1)
" T ) (10:2)

S (10.3)

(o) ’

S (10.4)

S (wo))

The second equality is true because f~! is continuous, which implies that y — v if and

only if x — xo. ]
Example 8. Let y = sin(z), = € (—7/2,7/2). Find (=) (y).
Proof. f~'(y) = arcsin(y). Then, by the Inverse Function Theorem:

W) = s Gresin)) ~ V1= sin(arcsin(y)) /1 -2
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10.5 Application: Auctions

In this section we present an example that applies the Chain Rule and the Inverse Function
Theorem. We present the economic context first to establish where the problem arises. We
then present a purely mathematical formulation which simplifies some features of the actual

problem so that the application of the theorems is more transparent.

10.5.1 Economic Context

A single object is traded at an auction with two potential bidders, i € {1,2}. Each individual
has a valuation for the object, v; € [0, 1], which represents the maximum amount they are
willing to pay for the object. Valuations are private, which means that bidder ¢ does not
know the valuation of bidder j. They are also independent. which means that bidder ¢
cannot infer any additional information about v;, based on his own realization. Both players
know the probability distribution of (v;,v;). At the time of the auction, each individual must
decide an amount b; to bid. The rules for allocating the object follow a first price auction.
Whoever bids the highest amount pays b; and receives the object. Losers do not have to
pay and do not receive the object. The optimal bid depends on i's beliefs about the other
player’s strategy.

We will state this problem in a mathematical form so that we can apply some of the

differentiation techniques in this chapter. The function we want to optimize is:
U(b,v) = (v —"0)P(b > o(v;))

A bidder’s expected utility is the net amount that a bidder receives if she wins the auction
(v —b) times the probability of winning. The utility function captures the main trade-off in
auctions: If you bid higher then you have a higher probability of winning the object but you
also receive a lower net payoff in the event that you win.

The probability depends on the strategy of the other player, o(v;), which is a function
of her valuation. Let F' be the cumulative density function of v;, which is assumed to be

strictly increasing (the variable is continuous).
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10.5.2 Mathematical Formulation

After some manipulations the problem can be rewritten as:
Ub) = (v—b)F(c™'(b))
where v is a constant. Define the supremum of the function as

U* = sup U(b)

b€R+

We formulate assumptions on the functions, sometimes referred to as regularity condi-

tions, which ensures that some of the objects that we are analyzing have desirable properties.
Assumption 10.5.1. (Regularity Conditions)
(a) The function F : R, — Ry is twice differentiable and F' > 0.

(b) The function o : Ry — R, is surjective, continuous on R, , differentiable on R, and

its derivative is strictly positive.

(c) F(o=}(0)) = 0.

Let us analyze what these regularity conditions. First, the positive derivative ensures
that F, o are strictly increasing and therefore F~1(oc~1(b)) is strictly increasing. This ensures
that there is a tradeoff: Bidding more increases the value of F(o~1(b)) and decreases (v —1b).
Such an economic trade-off guarantees that the problem has an interior solution. The second
derivatives are required so that we can apply our theorems. The last condition states the

probability of winning the auction if you bid zero, is also zero.
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10.5.3 Existence Interior Solution

First we show that the problem has an interior solution when v > 0.

Lemma 10.5.1. (Ezistence Solution) Suppose that 10.5.1 holds. For each valuation v €
0,1], there ezists an optimal bid 0 < b*(v) < v such that U(b*) = U*. Furthermore, if the

valuation is zero then the optimal bid is zero, b*(0) = 0. If the valuation is positive, v > 0,

then the bid is also positive b*(v) > 0.

Proof. We break down the proof into multiple parts. Define h(b) := F(c~(b)).

(a)

The function h(b) is strictly increasing.
By Lemma 10.3.1, F” > 0 and ¢’ > 0 implies that F,o are increasing. By the Inverse
Function Theorem, the inverse of ¢ exists and

—1\/ _ 1
(U ) (b) - O'/<O'_1(b)

Since ¢’ > 0 for every point on its domain and it is surjective, then (¢=!)'(b) > 0 for
all b € R,. Since the composite of two strictly increasing functions is also increasing,

F(o~1(b)) is strictly increasing in b.

Choices b > v are suboptimal.

Suppose that we set b = v, then U(b) = 0. For b > v > 0, F(o71(b)) > F(c71(0)) =0
because the function is strictly increasing. Furthermore, for b > v, the term (b — v) is
strictly negative by construction. Therefore U(b) < 0 for all b > v. That means that it

cannot be optimal to choose any b > v.

Existence optimal 0 < b*(v) < wv for all v > 0

That means that without loss of generality we can restrict attention to the interval
[0, v], which is a compact set. We can also show that U(b) is continuous because it is

the composite of continuous functions. By the extreme value theorem, there exists a
b* € [0,v] such that U(b*) = U*.

Special Cases If v = 0, then b*(0) € [0,0]. Therefore b*(0) = 0. Now we consider the
case where v > 0. If b = 0 or b = v, then U(b) = 0. If b = v/2 then h(b) > 0 and
b—v > 0. This implies that U (Z~)) > 0. This does not imply that b is optimal, but rather

that the corner solutions are suboptimal. That means that b*(v) € (0,v).
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10.5.4 First Order Conditions

Lemma 10.5.2. Suppose that 10.5.1 holds, then b*(v) solves the following first order condi-

tions.

0
a°
Proof. In the previous lemma we showed that b*(v) is an interior maximum. Therefore,
we can use the first order conditions to identify it. Let U(b) = (v — b)h(b) where h(b) :=
F(o71(b)). Then using the product rule:

(v =b)F'(07' (b)) 70 (0) + (=0)F (0™ (b)) = 0

U'(b) = (v — b)H'(b) — h(b) = 0

Using the chain rule:

(v =b)F' (o (b)) (o) (b) = h(b) = 0

Using the inverse function theorem and plugging in the definition of h(b):

(v —b)F'(c7 (b)) —F(e™*(b) =0 (10.5)
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10.6 Exercises
1. In the auctions example.

(a) Assume in addition that o(v) is a function such that Vv € [0, 1], b*(v) = o(v) (there

is a symmetric equilibrium). Use Equation 10.5 to show that:

The right hand side is called the virtual value.

(b) Using the above equation and the signs of the derivatives, show that if Vv €
0,1],0*(v) = o(v) then Yv € [0,1],0(v) < v (this show that in a symmetric

equilibrium everyone bids weakly below their valuation).

2. Assume f function is continuous on [0,00) and differentiable on (0,00). Suppose

f(0) =0 and f’ is increasing on (0, 00). Prove

is increasing on (0, 00).
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Chapter 11
Taylor Expansion

In this section we will explore the properties of higher derivatives. We will prove Taylor’s
theorem which concerns the fit of polynomial approximations of a function around a certain
point. The theorem has wide applicability in economics, with two main uses. First, it is used
for its desirable approximation properties. In econometrics it used as a tool to deal with
non-linear criterion functions and derive the asymptotic distributions of estimators. This and
other types of approximations are used in macroeconomics to compute numerical solutions
to macro-models. Second, it is used as a tool to analyze the signs of the derivatives. At the
end of the chapter we give an example where Taylor’s theorem can be used to characterize
risk averse consumers. Taylor’s theorem is a powerful tool that requires differentiability of
the function up to a certain order.

This chapter is organized as follows. We start of with a definition of higher-order deriva-
tives. In the remainder of the chapter we prove Taylor’s theorem by breaking down each of
its components. First, we analyze the properties of polynomial approximations, which are
proven primarily with algebraic manipulations. Second, we prove a recursive version of the
mean value theorem. Finally, we prove the main statement of Taylor’s theorem incorporating

the previous steps.

Definition 11.0.1. Let f : (a,b) — R be a real-valued function. Let = € (a,b) and define
fO(z) = f(x). Suppose that f™ : (a,b) — R exists. We say that f™ is differentiable at
xo € (a,b) if there exists a finite L € R such that:

o (1) = £ o)

T—T0 T — X

—L|=0

We define "™V (x4) := L as the (m + 1) order derivative of f evaluated at xo. If f0™ is
differentiable at every = € (a,b), we say that f is (m + 1)—order differentiable.
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11.1 Polynomial Approximation

Definition 11.1.1. Suppose that f : (a,b) — R is M —order differentiable. Define the
M —order Taylor approximation at x € (a, b):

M p(m) (g pm (M) () M
) S i oL S Ch 17V P .2 L ;4!)’1

We present the following illustration of the Taylor approximation and its derivatives with

respect to h for a 2-order differentiable function.

P(R) = f(@) + SO @ + 5 [ )
FO @) + f)h

gl
=

—~
=

~—
I

This leads to a set of interesting properties. For example, P®)(0) = f®)(z) for s €
{0,..., M}. Notice that the terms f(*)(x) are fixed coefficients, the only thing that varies is
h. Some of the terms vanish with higher s because the derivative of a constant term is zero.

We formalize these results for arbitrary M.

Lemma 11.1.1. Suppose that f : (a,b) — R is M—order differentiable and suppose that
P(h) is the Taylor approzimation at x € (a,b). Define R(h) := f(x + h) — P(h). Then
P(h), R(h) are M-order differentiable functions and for 0 < s < M.

1. PO(h) =M [k

m=s (m—s)!

2. RO(h) = f9(x+h) — PO(h).

Proof. We will prove each part of the theorem separately.

1. We show the first part by induction. If s = 0 then the result follows by the definition
of P(h). Now suppose that it holds for some 0 < s < M — 1. That means that
PG)(h) = Z?Z”\r{:s % This is a polynomial in h, which is differentiable. The

terms f™(z) are fixed coefficients that do not depend on h. We will show that it
holds for s + 1.

Since s < M — 1, we can decompose it as

POh) = fO @)+ > f WH

m=(s+1)
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The derivative of the first term is zero because it does not depend on h. For (m—s) > 1
we can differentiate each power term (m — s)h™™* as the derivative (m — s)h™57L.

Then the derivative exists and is equal to

T P A (0] i
PO (p) = Z) G

m=(s+1

2. We need to differentiate the term f(z + h) with respect to h. Notice that x is fixed in
this formulation. The chain rule is a good tool to address this issue.

Define g(h) := x + h and w(h) := f(x + h) = f(g(h)). For s = 0, w® = w(h) =

f°(z + h). Suppose that it holds for 0 < s < M — 1. Then w'® = f®(z + h).

The derivative is g(h) = 1. Since s < M — 1, the derivative of f(*)(y) exists by

assumption of the theorem. Given that both derivatives exist, we can use the chain
rule in Theorem 9.6.1 to show that w*T'(h) = fE+Y(g(h))gM (h) = fE+H) (2 + h).

We can then combine the two results to show that

RE(h) =w®(h) — P(h) = f(z 4+ h) — PO (h)

]

Corollary 11.1.1 (Properties Taylor Residual). Suppose that the assumptions of Lemma
11.1.1 hold, then

(a) Foralll<s<M, R®(0)=0.

() ROD(R) = FOD () = fO D (@) = P h.

Proof. (a) By Lemma 11.1.1, PO () = M SZI@I2 e — o then A2 = 1. Other-

m=s (m—s)!

wise, if m > s, then h™™° = 0 evaluated at h = 0. Therefore, since 0! = 1,

o) =T = o)

We can use the second part of the lemma to show that R®)(0) = f)(z +0) — P®)(0) =
FO ) — FO () = 0.

(b) PO (h) = SO0, LW which is equal to fM N (2)h0 /00 + M (x)h! /11 =
M1 (2) + fM(z)h. Therefore the M derivative of the residual is RM~Y(h) = fM=1(z +

h) — fM=1(x) — fM(z)h using the second part of the Lemma. O
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11.2 Recursive Mean Value Theorem

Lemma 11.2.1 (Recursive Mean-Value-Theorem). Suppose that f : (a,b) — R is M —order
differentiable and suppose that P(h) is the Taylor approximation at x € (a,b). Define
R(h) := f(z + h) — P(h) and 0y := h. Suppose that M > 1, then

R(h) = R¥(6,) [ ] Om (11.1)

where 0, € (0,0,,_1) for all1 <m <sandse{l,...,M}.

Proof. Assume WLOG that A > 0. By Lemma 11.1.1, R(h) is M —order differentiable. We

will prove this by induction.
(i) For s = 1. by Corollary Properties Taylor Residual (Corollary 11.1.1), R(0) = 0.
Therefore, by the Mean Value Theorem, there exists 6; € (0, h) such that,
R(h) = R(h) — R(0) = R (6,)h
Setting 6y = h completes the definition. If M = 1, then we are done, otherwise, we can
continue.

(ii) Suppose that Equation 11.1 holds for some s € {1,..., M — 1}. We will show that
it holds for s + 1. By Properties Taylor Residual (Corollary 11.1.1), R®(0) = 0.
Furthermore, R®)(h) is differentiable because s < M — 1. Therefore, by the Mean
Value Theorem, there exists 05,1 € (0,0;) such that

R*(6,) = R¥(0,) — R®(0) = RETY(0,,1)6,

Substituting this into Equation 11.1, we get the equation:

s—1
R(h) = R¥(8,) H Om, Assumption Induction Step
m=0
s—1
= R (0341)0, [ Om By the MVT
m=0
= R(5+1)(95+1) 0., Grouping Terms
m=0
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11.3 Taylor Theorem

Theorem 11.3.1 (Taylor’s Theorem). Let f : (a,b) — R be M-order differentiable and let
P(h) be the associated Taylor polynomial evaluated at x € (a,b). Assume M > 1. Define

R(h) = f(x + h) — P(h). Then:
(1) limy g % =0
(i) P(h) is the only polynomial of degree lower than or equal to M with Property (i).

(iii) If, in addition, f is (M + 1)-th order differentiable, there exists ( € (x,x + h) such

that:
f'(M—I—l) (C)hM+1

(M +1)!

f(x+h)=P(h)+

We will break down the proofs into three parts.
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11.3.1 Rate of Convergence
Proof of Taylor Theorem (i). WLOG assume that A > 0. We consider two exhaustive
cases:

(a) If M =1, then R(h) = f(x+h)— f(z)— f(x)h. Then by definition of differentiability:

IR h) - ()

h—0 h—0 h

— f0(@)]| =0

(b) If M > 2, then proceed with the following proof. In Lemma 11.2.1, set s = M — 1. Then
R(h) = RM=D(0y, 1) [IY22 0, with the property that 0 < 6,, < 6,,_1 and 6y = h. We
can show that 0y, 1 < 0y < ... < 6y = h. Taking the absolute value on both sides of

the equation,

M-2

IR(R)| = |RM=Y(0_1) H Hm‘ Absolute Value of Equation 11.1.
Moo

= |RM=D(,,_1)| 10, Distributing Absolute Value
m=0

< [RM=D (9| pM 1 Because 6,,, < h, for allm e {1,...,M — 1}

On the other hand, by Properties Taylor Residual (b) RM=1(y,_1) = fM Yo+ 0y_1) —

fM=Yz) — fM(x)0y_1. We can reformulate the inequality as follows,

(M—1) M—1
|R(h)] < R (Onr-1)|R Dividing Inequality by h™

B = hM
= ’R(M_l)h(eM_lﬂ Cancelling out terms.
< |R(MHZ(_91M—1)| Since Oy < h.
M e+ ) — M (@) — M ()0

= By Properties Taylor Residual.
Orr—1

To complete this part of the proof we apply the definition of M-order differentiability.

Define
| a4 Oaa) = ) = M (@) 0u

Orr—1
Since f is M-order differentiable, then by Definition 11.0.1,

U(HM—I) =

lim U(@Mfl) =0

OM_l—)O
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The proof is almost complete, but we need to take the limits with respect to A not 65,4

so we have to do some technical manipulations so that we can exchange the limit.

Since limy,, , o u(fr—1) exists, then by the sequential definition of a limit, which we

stated in 9.1.1, lim,, oo w(@rs—1.,) = O for every sequence s.t. 0p;_1, — 0.

Let {h,} be an arbitrary sequence such that h, — 0. For every h,, choose the corre-
sponding value 0p/_1, found in the Recursive Mean-Value-Theorem, which satisfies the

property that 0 < 0p;_1, < hy,. Therefore 05, , converges and therefore

lim U(QM—I,n) =0
n—00

Since the sequence {h, } was arbitrary, that means that limy,_,o u(fy_1) = 0 and therefore

. |R(R)| _ ..
< =
fiy S < JimguOai-) = 0
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11.3.2 Uniqueness of the Approximation

Taylor’s Theorem Part (ii). Let:
P(h) = ag + ath + ...+ ayh™

Q(h) = by + byh + ...+ by hM

where the coefficients in Q)(h) are allowed to be zero at this stage. Suppose P # () are two

polynomials such that:
f(z+h) — P(h)

n nt =0
_flz+h) —Q(h)
n nt =0
Then:
fl@+h)=Q(h) _ flx+h)—P(h) P(h)—Q(h)
P - P LS
which means that limy,_, w = (. If this is the case then the polynomial also converges
at slower rates,
. P(h)—=Q(h) . P(h)—Qh) .
iy S g S =0, e

Suppose that there exists 0 < k < M such that a; # by. Let kg be the smallest such k. Then
for h # 0,

P<h)h_koQ(h> _ D k—ko (ZZO— by,) ¥ B Z(ak bR

k=ko

['herefore,
P(h) —

=ay — by
h—0 hFo

Since ay — by, # 0, this is a contradiction. Therefore, ay = by, for all k € {1,...,r}.
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11.3.3 Form of the Residual

From Properties Taylor Residual (Corollary 11.1.1)
RM1(h) = f171 (o + b — f171 () — Y ()
If fMFL(y) exists, we can differentiate twice with respect to h, we can show that
RMHL(h) = MY (g 4 p)

From the definition, R(h) = f(x + h) — P(h). Define g(h) := h**!. Then we can show that

(MAD! i

g™ (h) = (M +1)—m)! ’

me{l,...,M+1}

It follows that g™ (0) = 0 for all m € {1,...,M}. Then we can use the Cauchy’s Mean

Value Theorem recursively,

R(h)  R(h) — R(0)
Because R(0) = g(0) = 0.
g(h) — g(h)—g(0) (0) = ¢(0)
R(l)(gl)
- auchy’s Mexs :
9D (6,) (I) By Cauchy’s Mean Value Theorem
RM(0,) — RM(0)

= (I1) RY(0) = 0 by Properties Taylor Residual

(IIT) Because ¢V (0) = 0.

M+1 (9M+ ) R(M+1)(O)
(Orr11) — gP(0)
_ f(M+1 (z + Orry1)
(M + 1)!

Plug-in RM* (0ar11) = fM) (@ 4 O 41).-

We repeat steps (1) — (111) recursively until we obtain the final expression. To complete
the proof, multiply both sides by g(h) = R 1.

SO (2 + Opria) M+1

R(h) = (M +1)!
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11.4 Continuous Differentiability

Definition 11.4.1 (Continuous differentiability). Let f : (a,b) — R be a m—order differ-

entiable function. If f™ is continuous we say that f is m—order continuously differentiable

and denote it by f € C™.

Because of Theorem 9.3.1, if f™ exists then all its lower-order derivatives are continuous.

However, not all differentiable functions are continuously differentiable.

Remark [t is important to note that this property was not required to prove Taylor’s

theorem. We only relied on the definition of differentiability.
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11.5 Application: Risk Aversion

Taylor’s theorem can be very useful analyze problems that have sign restrictions. For exam-
ple, in decision theory, risk aversion can be characterized using second derivatives. Suppose
that a consumer is offered a choice between two assets. One asset pays x with complete
certainty. The other pays x + ¢ with half probability, and x — e with half probability, where
e > 0. In expectation, it pays x. Suppose that U(z) represents a consumer’s utility function.
Then a consumer is said to be risk averse if for all z,e € R,

1
Ulx) > =U(x+e)+ §U(3: —¢) (Risk Aversion)

DO | —

This captures the idea that a consumer prefers an asset with a certainty rather over a risky
asset, even if both give the same return in expectation. Suppose that we assume that the
utility function U is twice continuously differentiable. What can we say about the sign of
the derivatives?

The following lemma, which is derived using Taylor’s theorem, turns out to be very

useful.
Lemma 11.5.1. Let U : R — R be twice differentiable. Then for x € (a,b),

Ulx+e)+U(xr—e)—2U(x)

2

— U2(x)

lim
e—0 €

Proof. By using the first part of Taylor’s Theorem

Uz 4 €)= U(z) + UY(x)e + %U(z)(xk2 + R (e)

Uz —e) =U(z) — UY(2)e + %U(Z)(x)e2 + Rs(€)

Adding these two expressions together and diving by 2, we get
U+ e) + Uz —€) = 2U(z) + UP(2)e® + Ry(€) + Ra(e)

Notice that the terms involving f!(x) cancel out by construction. If we rearrange the terms
we get
Ry(e)

2

Ulx+e)+U(x—e)—2U(x) _ U@ () + Ry (e) N

€2 € €
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Ry (e) Ra(e€)

By the first part of Taylor’s theorem lim o =5~ = lim¢,q =5~ = 0. Therefore,
U U(x —e) —2U
i UG+ UG =0 =206 _
e—0 €

This allows us to formulate the following equivalence theorem.

Lemma 11.5.2. Let U be a twice differentiable utility function. Then a consumer is risk
averse if and only if U*(x) < 0 for all x € (a,b).

Proof. = Suppose that a consumer is risk averse, then for all x,e € R,

—_

1
Ulx) > =U(x+e)+ §U(.T —¢) (Risk Aversion)

2
By rearranging the equation and dividing by €2 > 0,

Ulx+e)+U(x—e)—2U(x)

: <0

€

By Lemma 11.5.1 U®(z) = lim_, Ule+e+U=e)=2U(@) ~Gych a limit exists because U is twice

€

differentiable. We can show that this is equal to zero by taking the limit on both sides of
the inequality.
<= Suppose that U(2)(z) < 0 for all # € R. Then we can use the third part of Taylor’s

theorem: )
Uz +€) = Ux) + UV (x)e + §U(2)(C1)62, G €(zr,x+e€)

1
Ulw =€) =U(x) = UM (@)e+ U G € (e a)
By averaging the two equations and rearranging the terms we can show that
1 1 1 o T 9
U@+ e)+ 53Uz —e) = Ulx) = JUT(G)e" + SU T (G)e

The right-hand side is less than or equal to zero because the second derivative is non-positive

regardless of the choice of (7, (5. Therefore, the consumer is risk averse.
O

The proof is interesting because we use both parts of Taylor’s Theorem.
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11.6 Properties Appendix: Common Strategies

Polynomial expansions can be manipulated in different ways to highlight different derivatives.
Suppose that we have a twice differentiable function evaluated at two points and expanded

around z,
fa+0) = fla) + [V @)e + UAQE, G € @ato

flx—e) = f(x) — fO(x)e + %U(2)(C2)€2 zetay € (v — €, ).

Additive Strategy: Cancels out first derivative. Useful if we know sign of second

derivative.

1
flote)+ flo—e) =2f(z) + 5 (UP(G) + U ()"
Let f be 3-order differentiable function.

flo+0) = f@) + @)+ UP@E + VO, G € (r,r+0)

flr =€) = @)~ [O@)e + TP ~ UGS G ez —en)

Subtraction Strategy: Cancels out second derivative. Useful if we know properties of

first and third derivative. Sometimes the first derivative is zero at a local maximum, which

simplifies the equation further.

flote) = fr =9 =2f0(x) + 3 UP(0) + UD (@)

Transforming Problem Let z;,2, € R. Then we can always express f(x1), f(z2) in the

above form by choosing = = 1(z1 + ) and choosing € = x5 — .
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11.7 Exercises

1. Suppose f: R — R is twice differentiable. Assume f(0) > 0, f/(0) < 0 and f"(x) <0

for all z € R. Prove there exists £ € <0, —%) such that f(§) = 0.

2. Assume f : [a,b] — R is twice differentiable and f’(a) = f’(b) = 0. Prove there exists

¢ € (a,b) such that A
F(©)] = (b—|f(b) — f(a)].

—a)?
(Hint: expand f (“TH’) at a and b respectively)
3. Let f : [a,b] — R be twice differentiable. Assume sup i,y [f"(z)] < M for some

constant M. Assume also f achieves its global maximum at some point z* in (a,b).

Prove

(@) + |£'(0)] < M- a).
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Chapter 12

First-Order Differentiation in R"

12.1 Definition Differentiation

Recall that f: R — R is differentiable at « € R if the following limit exists and is finite:

i L@+ 1) = £ (@)
h—0 h

We say that the derivative of f at x is:

fo) — i L) = )

h—0 h
This is equivalent to saying that f is differentiable at x, with derivative f’(x), if there
exists a function r : R — R such that:

f@+h) = f(x) = f'(z) - h+r(h)

And the remainder r is “sublinear”:

lim Lh) =0
h—0

Note that, for a given z, the term f’(z)h is linear in h, so we can interpret the derivative
f'(x) not as a number, but as a linear operator in R, that maps h to f’(x)h. This is a natural

way to extend the concept of derivative to R™:

Definition 12.1.1. Let f: U — R™, U C R". The function f is differentiable at p € U, if

there exists a linear transformation 7" : R™® — R™ such that:
flp+v)—f(p) =T(v) + R(v)
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and the remainder function R is sublinear:

RO
20 o]

We say that the derivative (also called total derivative or Fréchet derivative) is (Df), =T

This is equivalent to saying that f : U — R™ is differentiable at p € U if there exists a

linear transformation 7" : R® — R™ such that

) — £) = T)]

w30 o]

=0

Theorem 12.1.1. If f s differentiable at p € U, then the derivative is uniquely determined
by:

Proof. Let T be a linear map satisfying f(p+v)— f(p) = T'(v)+ R(v) and lim,_,o % =0.

f(p+tu) — f(p)

T(tu) N R(tu)

lim = lim (12.1)
t—0 t t—0 t
. tT(u) | R(tu)
= lg% y + ; (12.2)
. R(tu)
(12.4)

Given that ||u| is finite and R is sublinear, the second term vanishes, so:

Since limits are unique, if there are two such transformations 7" and 7", they must be equal
to each other: T'=T". O
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12.2 Continuity

Now, we state some of the theorems we saw in the univariate case, extended for the multi-

variate case.

Theorem 12.2.1. Let f : U — R™, U C R™. Suppose f is differentiable at p. Then f is

continuous at p.

Proof. (Df), : R® — R™ is a finite linear map, from R™ to a normed vector space R™.

lim [[f(p+v) = f) =l [[(Df)y(v) + R(v)]] (12.5)

< L (D)l - floll + [ =(v)] (12.6)

=0 (12.7)

given that [[(Df),| < oo, lim,_0 ||v|| = 0 and lim, ¢ [|R(v)|| = 0. O

Theorem 12.2.2. Let f,g: U — R™, U C R" be differentiable at p € U, o € R. Then:
1. (D(f +ag))p = (Df)p + a(Dg),
2. If f(p) =c, forallp € U, then (Df), =0

3. If f : R™ = R™ is a linear mapping, f(v) = Av, A € R™ x R", then A is the Jacobian
matrix for all p € U.

4. If h: R?*" — R is a bilinear form, h(p) = piAps, p = [pl

P2
(J)p = [PHA", pLA].

€ R A€ R" xR, then
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12.2.1 Differentiation of Vector Valued Functions

Theorem 12.2.3. Let f: U — R™ U CR". Then, f is differentiable at p € U if and only
if each of its components f; is differentiable at p. Furthermore, the derivative of the i-th

component is the i-th component of the derivative.

Proof. =: Let f be differentiable and define the projection on the i-th dimension as:
TR =R, mi(wy, ..., w;, ..., wy,) = w;
Clearly, m; is linear, so it is differentiable. Then, f; = m; o f is differentiable and:

(Dfi)p = (Dﬂi)f(P)(Df)p

Moreover, the projection 7; can be represented by the 1 x n vector that has 1 in the i-th

component and 0 elsewhere:
A=(0,...,1,...,0)

Thus we know that (D)) is represented by the matrix A. So:

(Dfi)p = A(Df)p =m0 (Df)y

<: Suppose each f; is differentiable, with derivative (D f;),. Construct:

(Dfl)p
T = :

(D fm)p

filp+ 1) = fi(p) = (Dfi)p - I
= flp+h) = flp)-T -h= :
S+ 1) = fi(p) = (Dfim)p - 1
Taking limits, this converges if and only if each component converges. Therefore, T is indeed
the derivative of f. O

This theorem is important, because it shows that what makes calculus in R™ different

from calculus in R is the multidimensionality of the domain, and not of the range.
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12.3 Special Theorems

12.3.1 Chain Rule

Theorem 12.3.1 (Chain Rule). Let U C R™ and W C R™ be open sets. Let f : U — R™
be differentiable at p € U and f(U) C W. Let g : W — R be differentiable at f(p) € W.
Define h = go f. Then h is differentiable at p € U and (Dh), = (Dg)q - (Df)p

Proof.

flp+v)—f(p) = (Df)
g(f(p) +u) —g(f(p)) = (Dg)sp)(u)+ S(u)
g(flp+wv)) = gl
(

Therefore,

g(f(p+0)) —9(f) = (Dg)sp((Df)p(v) + R(v)) + S((Df)y(v) + R(v))
= (D9)s)(Df)p(v) + (Dg) s B(v) + S((Df)p(v) + B(v))

It now suffices to show that the last two terms are sublinear:
L. (Dg) s R(v):

lim ||(Dg>f(P)R<U)H < lim ||(Dg>f(p)H ) ”R(U)H -0

v—+0 o] v—30 o]

as the first term is finite anr R is sublinear.
2. S((Df)p(v) + R(v)):

L ISUDA,) + REDI . 1SUDH,0) + REDI(DH,E) + RE)l

w30 o] =0 [[(Df)p(v) + R(v)| o]

The limit when v — 0 of the last term is finite:

[(Df)p(v) + RO LA B [DHpllllol [E@I I(Df) ||JFIIR(U)H
o] =l loll = o] o] il
0
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12.3.2 Mean-Value Theorem
Theorem 12.3.2 (Mean Value Theorem). Let f : U — R™ U CR". Assume f is differen-
tiable on U and the segment [p,q| is contained in U. Then:

[f(@) = fp)l <Mlqg—p|l, M= ilelg{ll(Df)zll}

Proof. Assume the segment [p, q] is contained in U. The segment can be parameterized as:
p+ilg—p), tel0.]]
Define:
g:[0,1] =R, g(t):=(flp) = f(@)" - fp+t(a—p))

= 4 =(fp) — F( @) (Df)pstig-p(a—p)

By the Mean Value Theorem in R, there exists ¢ € (0, 1) such that:
9(1) = 9(0) = ¢'(C) = (f(») = (@) (D fpsca—p(a —p)

9(1) = g(0) = (f®) — f(@))" - (f(a) — f(»)) = — | f(p) — f(Q)|”
= |Ifp) = F@I* = (f®) — (@) " (Df)pscan ® — q)

By the Cauchy-Schwarz Inequality:

1£ () = F@I < |(DFprcanl -0 —all < Mp—ql
N

Corollary 12.3.1. Assume U is connected. Let f: U — R™ U C R" be differentiable and
(Df), =0. Then f is constant.

Proof. Let z € U. Define P(z) := {y € U|f(z) = f(y)}. Lets show that P(z) is open:
Let y € P(x). Since U is open, there exists an e-neighborhood of y, O, C U, which is open.
Let z € O,. The segment [y,z] C O,. Then, |f(y) — f(2)] < M|y — z| = 0. This implies
that f(zx) = f(y) = f(z) for every z € O,. Then z € P(x), which implies O, C P(x), so
P(z) is open.

Now we show P(z) = U,Vx € U. Assume P(z) # U. That is, assume there exists « €
U,P(z) # U. P(z) and Uygp) P(y) are both open, disjoint and U = P(z) U (Uygp) P(y))-
This implies that U is disconnected, which is a contradiction. Therefore, P(z) = U. ]
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12.4 Partial Derivatives
Definition 12.4.1. Let f : U — R™, U C R". Define the ij-th partial derivative of f at p

as:
0fi(p) _ . filp+1te;) — filp)

an t—0 t

Theorem 12.4.1. Let f : U — R™ U C R" be differentiable. Then, the partial derivatives

exist and are the entries of the matriz that represents the total derivative.

Proof. Recall that the total derivative (Df), is a linear map. This means that there exists
a matrix of size m x n that represents (Df),. Let A be the matrix that represents the
derivative (D f),. Then:

df1 (p)
oz ;
t . _ J
(Df)ple;) = Ae; = lim o+ 6;) fo) |
- 8 (p)
Ox;
Then:
0fi(p) 9f1(p)
o1 T Oxn
A= : :
8 fm(p) O fm(p)
oz T Oxn

]

Note that Theorem 12.4.1 states that if the derivative exists, then the partials also exist.
A natural question is whether the converse is true. If the partial derivatives exist, is the

function f differentiable? The following example shows that this is not the case.

Example 9. Let:
0 if x,y=0

Yy
x2 +y2

fx) =

otherwise

f is not continuous at (z,y) = (0,0). To see this, take:

f(ll?nayn) == Vn Z 1

But f(0,0) = 0, so f is not continuous. However, the partials exists. Note, however, that

the partials are not continuous.
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In the above example, we saw that the existence of the partials is not sufficient for
the function to be differentiable. In particular, the partial derivatives of the function in
the example existed, but were not continuous. The following theorem states a sufficient
condition for f to be differentiable.

Theorem 12.4.2. Let f : U — R™ U C R". If the partial derivatives of f exist and are

continuous then f is differentiable.

Proof. Assume the partials exist and are continuous. Without loss of generality, assume
that m = 1 (Theorem 12.2.3). Let h € R".

flx+h)—flx) = fler+hy,...,zn+hy) — flz1,...,2,)

flzy+hy, ..., xn+ hy) — fz1, 20 + ho,y ..., 2n + hy)
(
(

f xl,I2+h2,...,$n+hn)—f(l'hl‘z,l’g—l-hg...,l’n—l-hn)
f xl,l'g,xg‘i‘hg,...,xn"—hn)—f(ﬁl,x2,$37x4+h4,...,I‘n—i‘hn)

+ flr1, 20, Tp1, T+ hy) — f(21, 29, ..., )

We are “moving” component by component on each line. Using the Mean Value Theorem:

0

— a—£(91,$2+h2,...,$n+hn)h1
0

+ _f(x17027‘7;3+h37"'7xn+hn)h2
(9:102

+ ...
0

+ a_gl(mla-"axn—lven)hn

where 61 € (z1,21+ h1),...,0, € (xn, 2, + hy). Then:

flx+h) — flx)—A-h

- (& _ O O _of
= (ax1(01,x2+h2,...,xn+hn) axl(x),...,axn(:cl,...,a:n,l,en) 8xn(x)) h
= z(h)-h
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By Cauchy-Schwarz Inequality:

[f(z+h) = flx) = A-hll _ [lz(h)
7] — Al

Ly =z 225 0

where the last inequality follows because the partials are continuous. Therefore, f is differ-
entiable. O
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12.5 Exercises

1. (Euler’s Equations) Assume f : R*? — R is differentiable. Fix (z,y) € R2 Define
g(t) = f(tx,ty) for all t > 0. Show g is differentiable and

g'(t) = wg—i(tx,ty) + yg—i(tx,ty)-

Assume in addition, there exists a > 0 such that
flta, ty) =t"f(x,y) Vt>0 and V(x,y) € R (12.8)

Show for all (z,y) € R?

of
dy

of

(z,y) +y

A function with the property (17.1) is said to be homogeneous of degree a. The

equation (17.2) is called Euler’s formula.

2. (Exercise 16 on page 347, Pugh) Let f : R?> — R? and g : R*> — R be defined by
f=(z,y,2) and g = w where

w = w(z,y,z)=zy+yz+zx

r = xz(s,t) =st y=uy(s,t)=scost z=2z(s,t)=ssint

(a) Find the matrices that represent the linear transformations (Df), and (Dg),
where p = (sg,%0) = (0,1) and ¢ = f(p).

(b) Use the Chain rule to calculate the 1 x 2 matrix [Qw/ds, Ow/dt] that represents
(D(go f))p-

(¢) Plug the functions x = x(s,t), y = y(s,t) and z = z(s,t) directly into w =

w(z,y, z) and recalculate [Ow/ds, Ow/0t], verifying the answer given in (b).
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Chapter 13

Second-Order Differentiation in R"

13.1 Bilinear Maps

Definition 13.1.1. Let g : R® x R® — R™ is a bilinear map if for all o, 5, € R and
w;,v; € R" such that s € {1,...,k} and j € {1,...,k'}.

K k koK
TPOLTS SRRYES 3 NN
j=1 i=1 i=1 j=1
for any positive integer k and k'

Lemma 13.1.1 (Bilinear Matrix Representation). Let g : R® x R" — R™ be a bilinear map.
If m = 1, then the function g is uniquely represented by an n x n matric H, such that

g(z,y) = 2'Hy where z,y € R™.

Proof. First we show that if g(z,y) = #'Hy then g is a bilinear map. Suppose that z =
SF oqu; € R and y = Zle B;v; € R™ Then,

ok a9t K
r'Hy = Z ou; | H [Z ijj] Plugging-in Linear Combinations
Li=1 i j=1
[k 7 K’
= Z oul | H [Z ijj] Distributing Transpose
Li=1 i j=1

We can distribute the sum on either side of h and rearrange the equation to prove the desired
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result.
k K
= Z ot H [Z ,ijj]
i=1 j=1
koK
= Z Z OéiﬁjU}Z»HUj

i=1 j=1

koK
= Z Z @;B9(ui, vj)
i=1 j=1
Second we show that every bilinear map can be represented with an n x n matrix H.
Define the entries h;; = g(e;, e;), where e;, e; are elementary basis vectors (have 1 in a
single coordinate and zero otherwise). This is a similar argument to when we proved the
unique representation of a linear map in Lemma 1.3.2. Then we can write all vectors in the
Euclidean space as linear combinations of the elementary basis vectors. Let u,v € R", then
u=73 " we;and v =737 uje;.

]
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13.2 Function Spaces

Definition 13.2.1. Suppose that g : R” x R" — R™. We will denote this as g(v)(u) where
u,v € R". Define g(v)(+) as a function that is constructed by fixing one of the inputs of g.

Lemma 13.2.1. Suppose that g : R™ x R" is a bilinear map. Then g(v)(+) is a linear map.

Proof. Let aq,3; € R and uy,us € R. Since g is a bilinear map we can distribute linear

combinations of its second argument.

g(v)(arur + agug) = a1g(v)(ur) + aeg(v)(uz)

O
We define a metric between two linear maps f, g as
d(f.g) =Ilf = gl

where ||T|| := sup,egn.|jz=1 ||7'(z)||. Using the operator norm inequality, this implies that

[|f(w)=g@)|| < ||f —gll ||v]|- We can show that ||T|| is a well-defined metric over the space

of linear maps.

L If = gll =llg = fIl (Symmetry).

2. If=gll <IIf = hl| + ||k — g|| (Triangle Inequality).

3. ||f—gll >0and ||f —g|| =0 if and only if f = g.
Proof. We prove each iterm

1. Let f(z) = Az, g(x) = Bz and h(z) = Cz. Then (i) ||f — g|| = |lg — f|| because
||Ax — Bz|| = ||Bx — Az|| for all x € R™

2. (ii) Follows from the fact that ||Axz— Bz|| < ||Az—Cxz||+||Cx— Bz|| (using the triangle
inequality for the Euclidean norm) for all ||z|| = 1. We can take the supremum on
both sides to show that ||f — g|| < ||f — k|| + ||k — g]|.

3. The norm is always non-negative by construction. Furthermore, if ||f — g|| = 0 that
means that |[(A — B)z|| = 0 for all x € R™ such that ||z|| = 1. It can be shown
that this also holds for all non-zero z € R" by scaling the vector. Then that means
that Ker(A — B) = R". Therefore A — B = 0,,x, and A = B. On the other hand if

f_g = Opmxn then ||f—g|| =0.
[
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13.3 Second-Order Derivatives

Definition 13.3.1. Suppose that f: R" — R™ is differentiable with total derivative (D f).
We say that f is twice differentiable if there exists a bilinear map 7' : R” x R™ — R™ such

that:
im JE@OI

v=0 o]

(Df)aso = (Df)a =T(v)() + R(v)(),

We denote the derivative as (D?f), := T and call it the second derivative of f. The norm
used in the numerator is the operator norm. The definition implies that R(v)(+) is linear on

its second argument (but not necessarily the first).

The definition of second-order differentiability implies that:

(Df)aso(w) = (Df)a(u) = T(v)(w) + R(v)(u)

Each element in this equation is a vector in R™. The equation is more easily interpreted if
we simplify some features of the problem. Let m = 1. Suppose that f is a function that
measures the profits of company and that u € R? is a proposed price change in two of its
products. The value (Df), represents the effects of an average price change at current prices
x (call this the “bad times” prices).

However, the marginal effects of the price could differ depending on the current state
of prices. Suppose that we evaluate the marginal change at a different level z + v (“good
times”), which we denote (Df),1,(u). The function T'(v,u) is a bilinear approximation to
these simultaneous changes in prices (change in overall level and marginal changes). Conse-
quently the functions (Df),4, and (D f), represent the effect of all possible price changes

at each level.

Remark 1: In the example we described there appear to be an artificial distinction
between changes in overall price levels and marginal price changes. If the function is twice
differentiable there need not be. In the next section we show that the function T'(v)(u) is

symmetric.
Remark 2: When f is a real-valued function, that is, when m = 1 the representation

is much simpler. By Lemma 13.1.1 there exists an n X n matrix that represents it. We call

this the Hessian matrix.
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13.4 Symmetry

Theorem 13.4.1. If (D?*f), exists, it is symmetric:

(D*f)p(v)(w) = (D* f)p(w)(v)

Proof. Without loss of generality, assume m = 1 (as symmetry concerns only the arguments
of f, not its values). Let f: R™ — R. Fix v,w € R™. Let t € [0,1] and define ¢ : [0,1] — R,

where:
g(s) = f(p+tv+ stw) — f(p+ stw)

Using the Chain Rule,
9/(3) = D fprtvrstw(tw) — D fpysw(tw)
By the Mean Value Theorem, g(1) — g(0) = ¢'(#),6 € (0,1), therefore
g(1) = g(0) = D fpitvrorw(tw) — D foro(tw)
On the other hand, by definition of the second order derivative:
(Dfpttvsone — (Df)p = (D*f)y(tv + 0tw)(-) + R(tv + Otw)(:)

(Df)psorw — (Df)y = (D), (0tw)(-) + S(0tw)(-)

Since (D?f), is bilinear then it is linear in its first argument,

(D*f)p(tv + 0tw) () — (D*f),(0tw) () = (D*f),(tv)(")

We can subtract Equation 13.3 from 13.2 to obtain a new equation

(D prtororw = (D fprore = (D*£)p(t0) (1) + R(tv + 0tw)(-) — S(Otw) ()

We can plug the right hand side into Equation 13.1, evaluated at the vector (tw),

g(1) — g(0) = (D*f),(tv)(tw) + R(tv + Otw)(tw) — S(Otw)(tw)
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We can divide both sides by #2,

g(1) — g(0)  (D*f),(tv)(tw) N R(tv + Otw)(tw) S (0tw)(tw)

12 12 12 12
= (D*f),(v)(w) + Rtv —|—52tw)(tw) - S(Qtz;;)(tw) Because (D?f), bilinear.
= (D*f),(v)(w) + Rtv —i—t@tw)(w) — S(Qtttu)(w) By Diff, R, S linear in second arg.

By definition of differentiability, R, S are sublinear in the first argument. Therefore we can
take limits on both sides to show that,

9D =90O) _ p2p) (0)(w)

To complete the proof we show that g(1) — ¢g(0) is symmetric in the vectors v, w.

g(0) = f(p+tv) — f(p)

9(1) = f(p+tv+tw) — f(p + tw)

Combining the two equations

9(1) = g(0) = f(p+tv+tw) — f(p+tv) — f(p+tw) + f(p)

which is symmetric in v, w. Therefore (D?f),(v, w) = lim;_,(g(1)—g(0))/#? is also symmetric

in the choice of v, w and therefore

(D?f)p(v)(w) = (D* f)p(w)(v)
O

Corollary 13.4.1. Let f : R® — R. Suppose that f is twice differentiable. Then, there

exists a symmetric matriz representation (Hessian) for (D*f),.

Proof. If m = 1, a matrix representation exists by Lemma Bilinear Matrix Representation.
By Theorem 13.4.1 the linear map is symmetric. Since the entries of the Hessian matrix are
h,;j = DQf(eZ-)(ej) and DQf(U)<U}) = DQf(w)(v), then hji = D2f(€j>(ei) = D2f(€i)(6j) = hz]

[
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13.5 Taylor’s Expansion Theorem

In this section we present a special case of Taylor’s theorem for twice differentiable real-valued

functions.

Theorem 13.5.1. Let f : R" — R be twice differentiable in an open set containing the

vectors x,y € R", then

F) = £@) + July — ) + 3y — ) Haly — o) + Rly,2)

where J is the Jacobian matriz associated with Df, and H is the hessian associated with

(D*f)., where R(-) satisfies lim,_,, % = 0. Alternatively this can also be expressed as

Fl) = £@) + July = ) + 50 = ) Haroty- v — )

where 0 € (0,1).

Proof. Let g(t) := f(x +t(y — z)). Then by Taylor’s expansion theorem (Theorem 11.3.1),

9(t) = 9(0) + ¢V (0)t + 5P OF + B, 1(y — v))

where the vectors y, z are fixed. Using the chain rule, we can show that gt () = D f,4(y—a) (y—
r) and ¢ (0) = Df,(y—x). The second term can be represented in matrix form as J,(y —x),
where J is the Jacobian of the function. The residual is an unknown function of x and the
vector t(y — x) with the property that lim; o R*(z,t(y — x))/t*> = 0. On the other hand, by

the definition of a second order derivative,

Dfx-i—t(y—oc) - Dfx = DQf:L’(t<y - ZE))() + S(t(y - JZ))()

where R is sublinear in its first argument. We can evaluate the linear maps on either side in

the direction (y — x),
D fosty-a)(y — ) = Dfoly —x) = D* fu(t(y — 2))(y — @) + S(t(y — 2))(y — 2)
We can substitute the left-hand side with g™ (t) — g™ (0) (using our previous result).
gD(t) = ¢(0) = D*fu(t(y — 2))(y — x) + S(t(y — 2))(y — )
We can divide both sides by ¢. The second derivative is bilinear, so D?f,(t(y — z))(y — x)/t
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is equal to D?f,(y — x)(y — x) (which does not depend on t).

90 () — 9(0)
t

S(t(y — x))(y — x)
t

=D*fuly —@)(y —2) +
Taking limits on both sides we can show that

W(g) — o0
t—0 t

= D*fo(y —2)(y — )

The term involving the residual converges to zero because it is sublinear. The term D?f, (y —
x)(y — x) can be represented in terms of the Hessian as (y — )" H(y — ). Finally notice that

g(0) = f(z) and ¢g(1) = f(y). We can combine our results to show that

Fl) = £@) + July = ) + 3y — ) Haly - ) + Rly,2)

where the residual is R(z,y) = R*(z,y — x). We can multiply and divide by #? to do the

following change of variable.

o IR @ty = 2)I] _ IR @ty =)

vee oy =2 e [ty — )2
R*
— lim H (x72v)||t2 =0
v=0 o]

We can use similar techniques to show that ¢ (0) = (y — 2)'H,19(,—2)(y — @), applying
the third part of the univeriate Taylor theorem. Therefore, we can alternatively state the

theorem as .
Fy) = f(@) + Ty = 2) + 5(y = 2) Haroty) (y — @)

where 6 € (0,1).
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13.6 Exercises

1. We showed that a matrix representation exists for a linear map. Why does it have to

be unique?

2. Let f: R? — R? be defined by

f<z1>=(x§+x§).

Prove for any p € R?, the matrix that represents (D?f), is
6p1 0
0  6po .

f(z) = 2T AT Az

3. Let f:R™ — R be defined as

where A is an n x n matrix. Calculate the matrices that represent (Df),.

4. Assume that X is an n x k full rank matrix and that ¥ € R”. Show that § =
(X'X)1X'Y is the solution to the least squares criterion function by computing the

first order conditions of
(Y = XB)(Y - XP)
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Chapter 14
Comparative Statics

The main focus of this chapter is to present the implicit function theorem (IFT), which
is frequently used in economic theory for comparative statics. In a canonical comparative
statics setting there is a set of endogenous variables and a set of exogenous variables
or parameters. An individual agent makes an optimal choice, which is encoded in a set of
equations. We are interested in understanding how those choices depend on the underlying
parameters because it allows to answer questions about policy changes and how heterogeneity
of the parameters impacts the model.

In order to prove the main theorem we take an intermediate step to prove the contraction
mapping theorem (CMT), which can be used to characterize existences and uniqueness of
solutions in certain cases. The main parts of our proof of the (IFT) transform the problem so
that we can apply the contraction mapping theorem (CMT). The (CMT) is of independent
interest the foundation for finding solutions to life-cycle models in macroeconomics and
structural microeconomics. To make the theorem useful on its own we need additional
structure, e.g. optimization model + blackwell sufficiency conditions, which we do not cover
here. However, the proof is interesting and is an opportunity to practice some of the concepts
seen in the math camp so far.

In the chapter we cover two problems that arise in consumer theory and highlight how

the IFT is useful to derive answers to economic questions.
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14.1 Contraction Mapping Theorem

14.1.1 Preliminaries
Definition 14.1.1. Let M be a metric space. A sequence {x,} is Cauchy if for all ¢ > 0
there exists an integer N such that k,n > N,

d(xg,x,) <€
Definition 14.1.2. A metric space M is complete if each Cauchy sequence in M converges
to a limit in M.

By Theorem 24 in ( ), the Euclidean space RM is a complete metric

space.
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14.1.2 Unique Fixed Points

Definition 14.1.3. Let M be a metric space. A contraction of M is a mapping f: M — M

such that for some constant p < 1 and all z,y € M we have

d(f(z), f(y)) < pd(z,y)

Theorem 14.1.1 (Contraction Mapping Theorem). Suppose that f : M — M is a contrac-

tion and that the space is complete. Then f has a unique fixed-point p and for any v € M,

the iterate f* := fo fo--- f(x) converges to p as n — oo.’

Proof. Choose any o € M and define x,, = f"(z9). We will break down the proof into

three parts.

(a) We show that for all n € N|

d(Tn, Tpi1) < p"d(wo, 21)

(14.1)

We can show this by induction. For n = 1, d(z1,22) = d(f(x0), f(x1)) < pd(zo,x1)

because f is a contraction.

Suppose that the relationship holds for some n. Then d(zy,41, Tni2) = d(f(zn), f(@nt1)) <

pd(zy, Tni1). By assumption of the induction step, d(z,41, ZTnio) < p"d(zg, x1).

(b) We show that the sequence {z,} is Cauchy. If N <m < n.

AT, Tn) < ATy Tims1) + A XTona1, Tigo) + - d(Tp_1, 20) Triangle Inequality (Recursive)

< p"d(zo, 1) + p" (2, 2) .. A p" (g, 21) By Equation 14.1

<pm (U4 p+p° 4 ") d(xo, 1)
<p™ > pld(wo, 1)
=0

< {dlao )
N
< 1p_—pd($o, 1)

Since p < 1 we can choose N large enough so that —

€ > 0. Therefore {x,} is Cauchy.

! This is not a derivative, it is function iterated multiple times.
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Factorizing d(xo, z1).

Finite series less than infinite sum

Series converges because p < 1.

Since p < 1 and N < m by def.

di(xo,:lrl) < € for an arbitrary



(c¢) Show that the sequence converges. Since M is a complete metric space and the sequence

is Cauchy, x,, — x*.

(d) Show that if a function satisfies the contraction property, it is continuous at z*. Fix
e > 0, and choose § = ¢, then for all z,y, d(f(z*), f(y)) < pd(z*,y) < e. Therefore, the

function is continuous.

(e) The vector z* is a fixed point because:

z* = lim z, = lim f(z,—1) = f(lim z,_1) = f(z")
n—oo n—oo n—oo

(f) Show that the fixed point is unique. Suppose that z* = f(z*) and y* = f(y*). Suppose
that o* # y*, then d(z*,y*) > 0. However, d(z*,y*) = d(f(z*), f(y*)) < pd(z*,y*)

which is a contradiction. Therefore, z* = y*.
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14.2 Implicit Function Theorem

Assumption 14.2.1 (Continuous Differentiability). Let f : U — R™, U C R™™™ be a

continuously differentiable mapping. Define

af1 of1 of of
dy1r T Oym 86, " 90,
B(O,y)=1|: . Al,y) = | : :
A fm Ofm Ofm O fm
9y1 " Oym 001 " 00,

Assumption 14.2.2 (Equilibrium Condition). Let zg € R™. There exists a (0, yo) € R™™
such that f(0o,y0) = 2o-

Assumption 14.2.3 (Full rank). Assume that B := B(6y,yo) is full rank.

Theorem 14.2.1. Suppose that Assumptions Continuous Differentiability, Full rank and
Equilibrium Condition hold. Then there exist open sets V. C R"™ and © C R™ with the
property that (0y,yo) € V. Furthermore, for all 0 € ©,

(a) There exists a unique y such that (0,y) € V and f(0,y) = 2.

(b) Lety = g(0) be an implicit function of 0. Then g : © — R™ is continuously differentiable.

Furthermore,

(i) g(6o) = vo-
(ii) f(0,9(0)) =z for all 0 € O.
(iii) (Dg)o, = —B~'A,
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14.3 Proof of Implicit Value Theorem

Proof. Without loss of generality assume that (6y, o) = (0,0) and that zp = 0. The Taylor
expression for f is

f(0,y) = A0+ By + R(0,vy)

where R is sublinear and continuously differentiable with respect to (0, y) since the other

terms are continuously differentiable. Solving f(6,y) = 0 for some 6, is equivalent to solving,
y=—B"(A0 + R(0,y))

where we use the fact that B~! is full rank. If R(6,y) does not depend on y then the proof
is complete. Otherwise, the equation has y on both the left and right hand sides. We will
show that there exists a unique y by defining a contraction mapping. Fix an arbitrary 6 and

treat A, B as constants, define the following function of y:
Ky(y) == =B~ (A0 + R(0,y))

Then we can find the difference between two values of y as:

[[Ko(y1) — Ko(o)|| = ||B~H(R(O,y1) — R(O,92))]| Substituting Definition
< ||B7Y| I|R(0,y1) — R(0, )| Operator Norm Inequality

OR(
= ||B7| H (z,9) H llya — y2|| Multivariate Mean Value Theorem

The scalar ||B~!|| is a finite constant because finite linear maps have finite operator norm.
The derivative of R is continuously differentiable around (0, 0) (recall that we centered (6, yo)
to be zero) and (DR)o = 0. Therefore we can bound the partial derivative term by
bounding the domain of (0,y). Choose |||, ||y|| < r such that

|52 < a7z
oy 11 = 2B

That shows that Ky(y) has the contraction property for ||zl|],||y|| < r, because

1
[ Ko(y1) — Ko(ya)|] < §||y1 — ||

This is the key part of the proof because it allows us to apply the contraction mapping

theorem. We also need additional steps to cover other implications of the theorem. For
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example, we need to ensure that (g, yo) is contained in the set V. To ensure this notice that
Ky(0) is the value that maps our original value of y (which we centered around zero) to some
other point. We need to make sure this is less than or equal to r (so that the contraction

maps it to the same set).
1K) < [1BH| 101 + 1B~| | R0, 0)]]

Combining the triangle inequality and the operator norm. We can make the residual arbi-

trarily small, e.g. ||z|| < 7, such that ||Ky(0)|| < r/2. Then define the set © as the ball with
radius 7 around zero, and let M be a closed ball of radius r around zero in R™.

By applying the contraction mapping theorem there exists a unique y for value of § € ©.

O
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14.4 Application: Savings under Uncertainty

In this example we will consider a two period model where an investor is deciding how much
to save for the future. Her utility function is given by the function g and depends on the
amount she receives in each period. She has an initial wealth w and is planning to invest
an amount z in the asset. In the first periods she consumes an amount w — x. The amount
she consumes in the future depends on the state of the world, which is uncertain. There are
s € {1,...S} possible states, each given a net income of 0b, in addition to the amount she

saved in the first period.

Assumption 14.4.1 (Preferences). Let g : R — R. g is C3, the function is strictly increasing
g (z) > 0,Yx € R and has strictly negative second derivative ¢"(z) < 0,Vx € R.

A strictly positive derivative ensures that the utility function is strictly increasing (more
is better). A negative second derivative captures risk aversion. The third derivative captures
absolute risk aversion, which we will explore in this chapter. The function g is her per-period

utility. Her expected utility is

s
flz,w,0) =gw—1z)+ Z msg(x + Oby)
s=1
Interpretation The sum represents the expected value over the different states, with prob-
abilities satisfying 7, € [0, 1], ZSS:1 s = 1. We also assume that # > 0. The payoffs are

bs € R. We could also add a discount factor to the analysis with minimal changes.
Assumption 14.4.2 (Zero-Expected Income). Zle msbs = 0.

This assumption ensures that the consumer saves some of her wealth for the next pe-
riod, to compensate for the fact that she does not receive any income in the next period (in
expectation). The following questions were from a previous quiz, and highlight interesting

techniques used to solve the exercises.
Problem We wish to analyze the properties of the solution x* using our differentiation

theorems. Our objective is to figure out the relationship between savings and initial wealth

and the variance of the asset (capture by 6).
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14.4.1 Convex Combinations

1. Show that ) m,¢'(ys) > 0,V{ys} € R and that ) m,¢"(ys) < 0,V{ys} € R.

Solution. For each s,

g'(ys) >0,Vs € {1,.., S} By assumption
759 (ys) > (>)0 The inequality is strict for at least one s
Zﬂsg/(98> >0

The inequality is weak because w3 > 0. It has to be strict for at least one s because

> .. ms = 1. A similar logic follows for ¢”(ys):

9"(ys) <0,Vs € {1,..., S} By assumption
759" (ys) < (<)0 The inequality is strict for at least one s
> g (ys) <0
Il
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14.4.2 FOC + Implicit Function Theorem

1. Define h(z,w,0) := %. Compute h(zx).

Solution. Notice that is a composite function of g(y) and y = w — x. Using the chain

rule we find that 2202 — a%(yy) -y 2% = ¢/(w — x)(—1). Using the chain rule we
can also show that 24t0s) — a%(yy) |(rome) 2L = g/ (2 + 6b,).

Finally we use the fact that a derivative of a linear combination of functions is just a

linear combination of the derivatives:

of Ogw—=x 0g(x + 0bs
h(z,w,0) = e —(856 ) —|—Z7T5—( pe )
=—g'(w—1)+ Zﬂsg’(:c + 0by)
N
2. Compute %,g—g,%.

Proof. Using the chain rule in a similar way as before, we can show that:

99’ (w — z)

o = 9 (w—2)
8gl(w — (I?) o
of(w—-2) _,

00

9g'(x +6bs)
dg'(x + 0bs) 0
ow N
dg'(x +6bs)
50 = g"(x + 6b,)b,
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Therefore we can compute each of the partial derivatives of h:

oh

o =Y (w—1x)+ Z 759" (x + 6b;) (Endogenous Variable)
T

h
g_w =—¢"(w—x) (Parameter)
oh "
20 = Z 7sq" (x + Obg)bs (Parameter)

]

Define the optimal z* as the one that satisfies the first order condition h(z*, w, ) = 0.
Assume that w # 0.

. Use the implicit function theorem to show that z*(w, 6) is increasing with respect to

w.

Proof. The implicit function theorem says that: W = —2—2 @£7w,9)§—1’}, (z* w,0)

Because of the result in 1.(a), 9%« ,9) < 0 and 22|, 9) > 0. Therefore _‘9"’0*8(;:79) <> 0.

This means that z*(w, 6) is increasing in w.

Note: The implicit function theorem can be applied to each parameter separately. In
matrix form the implicit function theorem says the jacobian of z*(w, ) with respect

to (w,0) is equal to —J !

s w@)wj(x*,wyg),(%w), where J; u.6). is the jacobian w.r.t to

x and J(z+ w0),(w,0) With respect to (w,#), which is equal to [Jiax w.0),w)s J(2*w,0),0))-

Therefore, there is no loss of generality in considering each parameter separately.

O
. oz* (w,0)
. Compute an expression for ==
Proof. By the implicit function theorem:
BCE*(’LU,G) — _8_h —1 @‘
20— 9z l(z*w,0) 90 | (@*w,0)
dz*(w,0) > msg” (x+0bs)bs
o0 T g (w—a)+) g (x+0bs)
O
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14.4.3 Absolute Risk Aversion

The coefficient of absolute risk aversion is defined as

We will assume that A(x) is decreasing Vo € R. We will show that this is related to
properties of the third-order derivative. The importance of the coefficient of absolute
risk aversion emerges in comparative statics exercises with savings, because when we

derive the first order conditions, we sometimes find terms involving the third derivative.
. Rewrite the equation as: ¢"(z) = —A(x)g'(x). Show that ¢"”(x) >70.

Proof. We can show that

g"(x) = —A(z)g'(x)Vx € R
= ¢"(x) = —A(z)g"(z) — Al(z)d (x)

"(@) -
g ()
—A(z)g"(x) is positive. Putting the two things together:

Since ¢'(z) > 0 and A'(z) < 0 (since A is decreasing), then —A’(z)¢'(z) > 0. The
) =

value A(z is positive because ¢”(z) is negative, ¢'(x) is positive. Therefore

gl//(l_) > O
[l

. Show that S2% | 7,g” (& + 0bs)bs > 0 and use it to find the sign of 2={wf) 8:1: (w 9 . [Hint: show
that 3.7 m.g"()bs = 0 and construct a Taylor expansion between x and x + 0b, for

each s.

Proof. Fixed typo: Originally the equation was stated in terms of v”(y). Changed it

to ¢”(y). This question also requires you to assume that 6 > 0.

S S S
Y mbe=0 = g"(z)) mo=) mbyg'(x)=
s=1 s=1 s=1
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Therefore we can rewrite the following equation as:

iwsg z + 0b,) Zﬂsg (z 4 0b,)b, —Zﬂsg
s=1
—Zws o (@ + 0b,) — o' ()]
We can do a first order taylor expansion between = and x + 6bs. Let & € [z, x + 0by):
Zws 9" (z + 6b,) Zws bsg" (&)
S " (€)0b) > 0
s=1

The last result follows by assuming that § > 0 and the fact that ¢"’(z) > OVz € R.

Oh(x*,w,0)
06

Oh(x*,w,0)

> (. Since 5

Therefore < 0, then by the implicit function theorem.

Oz* (w,H)
5 > 0.

]
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14.5 Exercises

1. Consider the Auctions Example in previous chapters. Show that b*(v) is increasing in

v. [Hint: Use the implicit function theorem).

2. Consider the following Keynesian IS-LM model. Suppose

Y = C(Y -T)+I(r)+G
M = L(Y.r)

where Y is GDP, T is taxes, r is interest rate, G is government spending and M is
money supply. The functions C(-), I(-) and L(-,-) are consumption function, invest-
ment function and money supply function respectively. Assume they are continuously
differentiable and

oL oL
/ !/ = -
0<C'(z)<1, I'(r)<0, ay>0’ and 8r<0’

Suppose G, M and T are independent variables which can be controlled, Y and r are
dependent variables determined by G, M and T. Analyze the relationships between
{Y,r} and {G, M, T}.
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Chapter 15
Concavity (Convexity)

This section draws most of its results from Sundaram et al. (1996) Chapter 7. In the majority

of the cases the proofs are taken directly.

15.1 Set Definition

Definition 15.1.1. Let f : D — R, D C R" convex. The subgraph of f and the epigraph
of f are defined as:
sub f = {(z,y) €D xR | f(z) > y} (15.1)

epi f={(z,y) e DxR| f(z) <y} (15.2)

b a b a b a b
Convex Subgraph Non-convex Subgraph Convex Subgraph Non-Convex Subgraph

Non-Convex Epigraph Non-Convex Epigraph Convex Epigraph Convex Epigraph

Figure 15.1: The figure depict the subgraph of a function defined over the interval [a,b]. The
shaded region is the subgraph and the epigraph is the blank region above the subgraph. Notice
that the subgraph and epigraph are defined with weak inequalities so they intersect at y = f(x).
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Definition 15.1.2. A real-valued function is said to be concave if sub f is a convex set.

It is said to be convex if epi f is a convex set.

Theorem 15.1.1. A function f : D — R" defined on a convexr set D C R", is a concave
function if and only if for all x,y € D, X € (0,1),

fOz+ (1= Ny) > Af(@) + (1 =N f(y)
Similarly, the function is convex if for all x,y € D, X € (0,1)
fOz+ (1= Ny) <Af(@) + (1 =N f(y)

Proof. We will only prove the relationship for concave functions. The proof for convex

functions is analogous.

= Suppose that the subgraph of f is a convex set. Let x1, x5 be arbitrary points in D.
Then (x1, f(x1)) and (22, f(22)) are contained in sub f. Since the set is convex, if A € (0,1)
then xy := A(xq, f(x1)) + (1 — A) (22, f(x2)) is contained in sub f. This can be rewritten as
(Azy + (1 — Naxg, Af(21) + (1 — X) f(22)). By definition, a point (w, z) is contained in the
subgraph if f(w) > z, therefore,

FOz1+ (1= A)xo) = Af(z1) + (1 = A) f(22))

<= Now suppose that we choose arbitrary points (z1,41), (x2,y2) € sub f, ie. x1,29 €
D and f(x;) > y; and f(zg) > yo. We want to show that for A € (0,1), (z),yn) =
Az1,y1) + (1 — N)(za,y2) € sub f. Notice

f(xa) = fQzr+ (1= Nxa) > Af(21) + (1= A f(22) = Ayr + (1 = AN)ya =

Because f(x)) > yx, we have shown that the subgraph is convex.
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15.1.1 Strict Concavity (Convexity)

Definition 15.1.3. A real-valued function f defined over a convex set D C R" is said to be

strictly concave if for all 2,y € D such that x # y and for all A € (0, 1),

fQz+ (1= Ny) > Af(z) + (1= A)f(y)
Strictly convex functions are defined analogously by exchanging the inequality.

Lemma 15.1.1. A function f : D — R is concave on D if and only if the function —f is

convexr on D. It is strictly concave if and only if —f is strictly convex.

Proof. Let 21,29 € D and A € (0,1) then

fAzi(1=A)z2) 2 Af(21)+(1-A) f(z2) = —fQAzi+(1=A)z2) < A(=1)f(21)(1-A)(=1) f(22)

]

This lemma helps us establish that we can prove the majority of theorems for concave

function, without loss of generality.

15.1.2 Conic Combinations of Concave Functions

Lemma 15.1.2. Let F be a collection of real-valued concave functions defined on a convex
set D C R"™. Then for all positive integers K, vectors of weights § € RE and functions
fr € F, then f := 21521 Ok f1 is also concave.

Proof. Let z1,25 € D and let A € (0,1). Since each function is concave
Fehan + (1= M) > Milen) + (1= N fules) Wk € {1,..., K}

Multiplying each term by a non-negative quantity preserves the inequality. We can then
sum the terms over k € {1,..., K}.

K K K
Zekfk(/\xl + (1 - >\)$2) Z )\Zekfk(lj) + (1 - )\) Zekfk(@) Vk € {1, c. ,K}
k=1 k=1 k=1

which implies that f(Ax; + (1 — A)zg) > Af(z1) + (1 — A) f(xa).
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15.2 Derivative Characterization

15.2.1 First Derivative
Theorem 15.2.1. Let D be an open and convex set in R™, and let f : D — R be differentiable

on D. Then f is concave on D if and only if

Df(x)(y —x) = f(y) — f(x), Ve,yeD

Proof. = Suppose that f is concave. Let z,y € D, then forall ¢t € (0,1), f(ty+(1—t)x) >
tf(y) + (1 —t)f(x). We can subtract f(x) on either side and divide by ¢,

flty+ (A =t)z) = flz)  tfly) + (1 =) f(z) = f(2)

; = ; :f(y)_f($)’ tG(O,l)

The second equality follows because some of the terms cancel out. Furthermore, we can

rewrite ty + (1 — ¢)x as x + t(y — x). Then we can take the limit from above.

i 1 1y =) — ()
L0 t

> f(y) — f(z)

Define g(t) := f(z + t(y — z)) and let ¢'(t) = lim;_,o M. Using the chain rule we can

show that ¢'(t) = Df,(y — x). Since the limit exists then it must be equal to lim; M

because of Theorem Equivalent Limit Definitions. therefore,

Dfu(y —2) > f(y) — f(x)
<— Now suppose that for all x1, x5 € D we have

D fo, (22 — 21) > f(22) — f(71)

Pick any z,y € D and A € (0,1). We will show that we must have f(Ax + (1 — \)y) >
Af(z)+(1—X) f(y), which will establish that f is concave on D. For expositional convenience,
define the convex combination

zi=Ar+(1-Ny

By assumption we also have,
Df(z)(z —z) = f(z) — f(2) (15.3)
Df(z)(y —=2) = f(y) — f(2) (15.4)
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Notice that A(z — 2) + (1 — A)(y — z) = 0. Multiplying Equation 15.3 by A/(1 — \) and

adding the two equations, we obtain

A 1
mf(@*‘f(y)—mf(z)é()

Then multiplying the equation by (1 — \) and rearranging,

M@)+ A =Xfy) < f(z) = fOz+ (1= Ny)
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15.2.2 Second Derivative

Definition 15.2.1. Let f : R® — R be a twice differentiable, real-valued function. The
second derivative D?f, evaluated at a point x € R" is negative definite if for all v € R
such that v # 0, D?f,(v)(v) < 0. If the inequality is weak for at least one v, then D?f, is

negative semi-definite.

For real-valued functions, it can be shown that negative (semi) definiteness of the second
derivative is equivalent to saying that its associated hessian matrix is negative (semi) definite.
Notice that symmetry is already guaranteed by Theorem 13.4.1 so we do not need to verify

it as part of the definition of negative (semi) definiteness.

Theorem 15.2.2. Let f: D — R be a twice differentiable function, where D C R"™ is open

and convexr. Then
1. f concave if and only if D?f, is a negative semi-definite matriz for all x € D.
2. D?f, is negative definite for all x € D, then f is strictly concave.

An analogous result holds for (strictly) convex functions and the Hessian being (positive

definite) positive semi-definite.

Proof. We break down the proof into two parts.
< Let z;,75 € RF and X € (0,1). For notational simplicity define h := z; — x5 and

= Ar1 + (1 — A)ze. We will do two separate taylor expansions of f around x.
F2) = F(ea) + (DF)ay (1= M)+ 5 (D Dol(1 = NR)(1— A)h)
Fles) = £(22) = (Df)iy(AR) + 5(D2) (AR (D)

where 6 is contained in the line segment between x; and x, and 1 is contained in the line
segment between x, and zo. Multiply the first equation by A, the second equation by (1—\).

We can use linearity of (D f)x) to simplify each equation.

A (1) = AF(23) + (DF)ey (AL = M) + (D Po((1 = DB)((1— A)h)
(1 =N f(z2) = (1 = A)f(2x) = (Df)ay (1 = A)AR) + %(D2f)w(/\h)(kh)
We can add the two equations together

M)+ (1= N () = F(a) + ZAD*ol(1 = DR = X)) + 5(1 = A)(D?Fu(W) (AR
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If D?f is negative semi-definite then the two terms in the equation are weakly negative then

we can prove concavity

M) + (1= X)) f(z2) < f(wn)

Similarly if D?f is negative definite, then we get strict concavity,

Af (1) + (1= A)flx2) < flaa)

—> Let x € D. Choose an arbitrary non-zero ¢ € R". Define x5 = x+te,x; = x —te for
a scalar t > 0. Since the set D is open, there exists a small enough ¢ such that z{, x5, € R".
Carry out the following Taylor expansions using the form that includes the residual as a

separate term.

flx+te) = f(x) + (Df)a, (te) + %<D2f)x(t€)<t6) + W
flo —16) = f(a) ~ (DF)oy16) + L (D*alte)te) + 210

We can add the terms together and divide by 1/2,
%f(x + te) + %f(m —te) = f(x) + (D*f).(te)(te) + Rte)(te) + S(—te)(te)

Rearranging the equation and dividing by ¢t. We simplify the equation by using bilinearity
of (D?f),,

bte + 10+ e —19 ~ /(2

R(x,x +te) S(z,z — te)
2 +

= (D2f>x(6)(e) + 2 2

We can take the limit of the residuals, consider the first residual,

t
el = lim Rloztte)

lim R(x,x +te) |[e]| lim R(x,x + te)
-0 |fte]]?

=02 el o [Jte]?

We can apply a similar strategy with S(z,z — te). The left-hand side is non-positive by the
definition of concavity since z = $(z + te) + 3(z — te). We can take limits on both sides to

show that . )
Lt + L — 1) — f(@)
t—0 12

= D*fa(€) ()

Therefore, we it follows that D?f,(¢)(e) < 0, for any arbitrary non-zero ¢ € R". Therefore,

D? is negative-semi definite. O
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15.3 Special Topological Properties

Theorem 15.3.1. Let f : D — R be a concave function define on a convex set D C R".

Then f is continuous in the interior of D.

Proof. Let z € int(D) then there exists an open ball B(z,€) C D for some € > 0 such that
f(B(z,¢€)) (prove as an exercise). Choose an €¢* € (0,¢) and define A as the set of vectors
z € R such that ||z — z|| = €*. By construction, A C B(z,¢) C D.

WLOG choose an arbitrary sequence x, € B(x,€*) such that xy — 2. For all k there
exists zx € A such that z; = 0z 4 (1 — )z for some 6 € (0,1). The vector z; — x is in the
same direction as xj; — x but is constrained to have a particular length that does not depend

on k. This guarantees that as k — oo, 6, — 1. Therefore, by concavity of f,

fx) = f(Orx + (1 = 0)2x) > O f(x) + (1 = 0r) f(21)

Taking limits on both sides and since 6 — 1 (because z;, converges to x and z, — x has fixed
length).
lim inf f(xg) > f(x) +lm inf (1 —6k)zx = f(2)
k—o00 k—ro0

Similarly, we can find a vector w, € A and A, € (0, 1) such that x = \gzg + (1 — A\p)wg. We

can once again exploit concavity of f, to show that:

f(x) = fre + (1 = Xp)wr) > Aef (zr) + (1 — M) f(wr)

Since A\ — 1 as k — oo, by taking limits we obtain,

f(@) > lim sup f(z)

k—o0

Since f(z) < liminfy o f(zx) < limsup,_, f(zx) < f(x), then f(z) = limg,oo f(z) for
any arbitrary sequence {xy}. Therefore, f must be continuous.
O
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Chapter 16

Quasiconcavity

16.1 Set Definition

The proofs in this section come from ( ), Chapter 8.

Definition 16.1.1. Let f : D — R, D C R" convex. The upper contour set of f and the

lower contour set of f at a € R, are
Usla) = {w € D | f(x) > a} (16.1)

Li(a)={z D] f(x) <a} (16.2)

Definition 16.1.2. A real-valued function is said to be quasiconcave if for all a € R, U(a)

is a convex set. It is said to be quasiconvex if for all @ € R, L¢(a) is a convex set.

Theorem 16.1.1. A function f : D — R defined on a convezr set D C R"™, is a quasiconcave
function if and only if for all z,y € D, X € (0,1),

fQz+ (1= A)y) = min{f(z), f(y)}

Similarly, the function is quasiconvez if for all x,y € D, X € (0,1)

fQOz+ (1= N)y) <max f(z), f(y)

Proof. We will only show the proof for quasiconcavity, the proof for quasiconvexity is anal-

ogous.
= Suppose that f is quasiconcave, i.e. that Us(a) is a convex set for each a € R.
Let z,y € D and A € (0,1). Assume without loss of generality, that f(z) > f(y). Letting

178



a = f(y), we have z,y € Us(a). By the convexity of Us(a), we have Az + (1 — \)y € Uy(a),

which means

fz+(1—=Ny) >a= f(y) =min{f(z), f(y)}

<= Now suppose we have f(Az + (1 — N)y) > min{f(z), f(y)} for all z,y € D and for
all A € (0,1). Let a € R. If Us(a) is empty or contains only one point point, it is convex,
so suppose that it contains at least two points x and y. Then f(z) > a and f(y) > a, so
min{ f(z), f(y)} > a. Now, for any A € (0,1), we have f(Az + (1 — X)y) > min{f(z), f(y)}
by hypothesis and so Ax+(1— )y € Uy(a). Since a € R was arbitrary, the proof is complete.

O

16.1.1 Strict Quasi Concavity (Quasi Convexity)

Definition 16.1.3. A real-valued function f defined over a convex set D C R is said to be

strictly quasiconcave if for all z,y € D such that x # y and for all A € (0, 1),

fOx + (1= A)y) >min{f(x), f(y)}

Strictly quasiconvex functions satisty,

JOx + (1= Ay) <max{f(z), f(y)}

Lemma 16.1.1. The function f : D — R is quasiconcave on D if and only if —f 1is
quasiconver on D. It is strictly quasiconcave on D if and only if —f is strictly quasiconvex
on D.

Proof. Let z1,25 € D and X € (0,1) then

fAzi+(1=A)22) = min{f(z1), f(22)} <= —f(Ari+(1-A)z2) < max{—f(z1), —f(22)}

Multiplying the min operator by a negative number switches to a max whose inner arguments
are multiplied by the negative number. A similar proof applies to strict concavity, using a

strict inequality instead of a weak inequality.

]
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16.2 Derivative Characterization

Theorem 16.2.1. Let f: D — R be a continuously differentiable function where D C R"™ is
convex and open. Then f is a quasiconcave function on D if and only if it is the case that
for any x,y € D,

fy) = fz) = Dfely—2)20

Proof. — First suppose that f is quasiconcave on D and let z,y € D such that f(y) >

f(z). Let t € (0,1). Since f is quasiconcave, we have

f@+itly —x) = f(1 =)z +ty) = min{f(z), f(y)} = f(z).
Therefore, it is the case that for all t € (0,1), we have

[l +ty —x)) — f(z)

>0
; 2

As t ] 0 the left hand side converges to D f,(y — ), so Df,(y —x) > 0.

<= Now suppose that for all z,y € D such that f(y) > f(z), we have D f,(y —x) > 0.
Pick any z,y € D, and suppose without loss of generality that f(x) = min{f(x), f(y)}. We
will show that for any ¢t € [0, 1], we must also have f((1 — t)z + ty) > min{f(x), f(y)},
establishing the quasiconcavity of f. Let z(t) = (1 — t)z + ty.

Define g(t) = f(z +t(y — x)). Note that g(0) = f(x) < f(y) = g(1); and that g is C*! on
0,1] with ¢'(t) = Df[z +t(y — x)](y — z). We will show that if t* € (0,1) is any point such
that f(z(t*)) < f(z) we must have ¢'(t*) = 0.

Suppose that t* € (0,1) we have f(x) > f(2(¢*)). Then by hypothesis, we must also
have D f, = (x — 2(t*)) = —t*D f.+(y — x) > 0. Since t* > 0, this implies that ¢'(¢t*) < 0.
On the other hand it is also true that f(y) > f(x) > f(2(t")), so we must also have
Dfcuwyly — 2(t*) = (1 = t*)Df.usly — 2] > 0. Since t* < 1, this implies in turn that
g'(t*) > 0. It follows that ¢'(t*) = 0.

O
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16.3 Conic Combinations Not Quasiconcave

In this section we present a counter-example showing than conic combinations of quasi-
concave functions are not, in general, quasiconcave. This stands in contrast with concave
functions, that were preserved under conic combinations. This finding has implications for

decision theory, where expectations can be expresses as finite (or infinite) conic combinations.

Example 10. Consider the following quasiconcave functions defined over R,
fla)=a® g(z)=1-2
Then the addition of the functions is not quasiconcave:

h(z) = 2* + 1 — 22

Figure 16.1: The figure depict the function h(z).
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16.4 Concavity and Quasi-Concavity

Theorem 16.4.1. Let f : D — R, D C R"™. If f is concave on D, it is also quasiconcave.

If f is convex on D, it is also quasiconvex on D.
Proof. Suppose f is concave. Then for all x,y € D and X € (0,1) we have
fOz+ (1= Ny) > Af(2) + (1 =N f(y)

> Amin{f(z), f(y)} + (1 = A) min{f(z), f(y)}
> min{f(z), f(y)}

]

Theorem 16.4.2. If f : D — R is quasiconcave on D, and ¢ : R — R is a monotone
non-decreasing function, then the composition ¢ ® f is a quasiconcave function from D to
R. In particular, any monotone transform of a concave function results in a quasiconcave

function.

Proof. Pick any z,y € D, and any A € (0,1). Since f is quasiconcave by hypothesis, we

have

fQz+ (1= A)y) = min{f(z), f(y)}

Since ¢ is non-decreasing, this implies that

P(fr + (1= A)(y) = p(min{f(z), f(y)}) = min{d(f(x)), o(f ()}
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Part 111

Answer Key
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Chapter 17

Suggested Solutions

17.1

Overview of Linear Algebra

1. Suppose that T'(x) = Ax and that F(y) = By, with A,,x, and Bgxm.

(a)

Show that G = F(T(x)) is also a linear map.

Solution. G = F(T(x)) = F(Ax) = B(Ax) = BAx = Cx, where C'isa k x n
matrix. Using Lemma 1.3.1 because G can be expressed as the multiplication of a

constant matrix times a vector, it is a linear map. 0
Show that ||G|| < ||F|| ||T||- Is the composite of two linear maps continuous?

Solution. Let & € R”. Using the operator norm inequality twice.

IE(T @) < [[F1] T ()]
< [EI T ||

Restrict attention to vectors of unit length such that ||Z|] = 1, then ||G(Z)|] <
[|F|| ||T||. Then right hand side does not depend on the input vector. Therefore
we can take the supremum on the left-hand side to show that ||G|| < ||F|| ||T||]. To
prove continuity it suffices to use the fact that G is a linear map by using Theorem
1.5.1. O

Assume that P is a square matrix. Use part (b) to show that for any non-negative
integer ¢, ||PY|| < ||P|I"
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Solution. If ¢ = 1 then ||P!|| = ||P||. Suppose that the statement holds for

some t > 1, then using the previous lemma ||P*|| = ||PtP|| < ||P]| || P||, where
|P] < ||P||* by the induction hypothesis. Therefore, ||P*|| < [|P||"™. By the
principle of induction, the result is proved. O

Show that if @ is a probability vector, then ||z|| > a for some a > 0.

Solution. First, we show that ||x|| > 0. We proceed using proof by contradiction.
Since ||z|| > 0, assume (by contradiction) that ||«|| = 0 then & = 0,,, meaning all
its entries are zero. However, the entries of a probability vector must add up to
one. Thus we must have |||| > 0. But this is not sufficient for the statement of

interest—-we want to show ||z|| is bounded below by a positive constant.

Let P denote the space of probability vectors. Now we show it is compact. Consider
a sequence of probability vectors zy = (1, ..., Tng) With Y.z = 1, 2 > 0 for all
k, and xp — x as k — oo. Since limits preserve equalities and weak inequalities,
it follows that ) .x; = 1 and z; > 0, therefore the limit is still a probability
vector and hence the set P is closed. It is also bounded because all its entries are
non-negative and less that or equal to one. Therefore, it is compact.

The function f(x) = Vatz is continuous because it is a polynomial of the entries
of the vector. The extreme-value theorem states that if a function is continuous
and the space is compact then it has a maximum and a minimum. Therefore, a
minimum exists, and denote infzep Vate = \/% for some x, € P. By our
previous result ||z.|| > 0 and therefore ||z|| is bounded away from zero.

In fact, 1/y/n < ||z|| < 1, where n is the dimension of ||z||. The shortest proba-
bility vector has the value 1/n as each component of the vector, while the longest
probability vector has the value 1 in a single component and 0 in all others. This

constitutes an easier proof for the statement:

22+ a2+ . 422
l|lz|| = \/x%+x§+...+x%:\/ﬁ\/ 12 L

n
Z\/ﬁxl—i-:m—i—...—l-xn :1/\/67

where the inequality is due to the AM—GM inequality (the inequality of arithmetic
and geometric means) and every element of a probability vector is non-negative

with a sum of 1.

]
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(e)

If P is a stochastic matrix, could it be ||P|| < 17 What would this imply for our

migration example if it were true?

Solution. Let P denote the space of probability vectors. Then if X € P then
Px € P. By applying this argument recursively we know that Pz € P. Fur-
thermore, using part (d), |[[P'z|| > |[.]| > a where a is a positive constant.
Furthermore, ||| < 1 because all the entries add-up to one and are non-negative.
Using the operator norm inequality if ||P|| < 1 then ||P'z|| < ||P||" ||z|]| — O.
However, this contradicts the fact that ||P'z||] > a > 0 for all integer ¢t and
probability vector ||x| € P. Therefore, it cannot be that ||[P|| < 1. In our
migration example, an implication of ||P|| < 1 would be that some people go to
other states apart from 1 and 2, i.e., the size of population in city 1 and 2 is
shrinking (which is why the norm converges to zero). However, the population is

not shrinking, but just changing location.
O

2. In this section you will expand some of the details of the proof of the Cauchy-Schwarz
inequality. Let A € R, v, € R". We know that if z = v — Az, ||z|| > 0, then

(a)

viv — 2 vle + Nxtx >0
Show that the condition in Equation 1.2 is equivalent to:

Aian {vlv — 2 'z + Vxlx } >0, Vv, zcR”

6 n

Solution. ( = ) Taking the infimum to the left hand side of Equation 1.2 implies
the infimum inequality.

( <= ) Suppose (by contradiction) that there exists a A € R such that v'v —
2 vl + Nxtx < 0 for some \. Then that means that this A\ produces a value

strictly lower than the infimum, a contradiction. ]

Consider the case when ||x|| > 0. Use the fact that the function is quadratic in A

to show that a minimum exists and that is

t
vle ,
—— = argmin{ v'v — 2\v'x + Nxlz }

Solution. The first order condition with respect to A yields —2v'x + 2z'z\ = 0

which yields the solution. The second-order condition is &'z > 0 hence it is indeed
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a minimum.

(c¢) Show that if v = &, then Cauchy-Schwarz attains equality.

Solution. If v = x then ||[viz|| = |[viv| = ||v]]? = ||[v]| ||z]|.
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17.2 Image and Kernel

1. Suppose that X is a non-zero m x n rank deficient matrix. Suppose that we partition
its columns X = [X7, X5] in such a way that Im(X;) = Im(X) and X; is full rank.
The block matrices have ny,ny columns, respectively. This is equivalent to dropping

redundant variables in a linear regression.

(a) Show that Equation 2.1 can be written in block-partitioned form as:

Xty
Xty

XX, XiXo p
XiX) XX,

t
1 . That means that

Solution. The transpose of X in block-partition form is [
2

o [x XX, XUX,
XX = [ X, XQ} _
Xt XIX, XIX,

Similarly we can show that

xty = ||y = MY
Xt Xty
[
(b) Suppose that §; = (X!X;)"'(X!Y). Construct a vector §* = b ] Show
no X1

that 8* is a solution to Equation 2.1 if and only if X{X;3, = X1V

Solution. Write the system of equations in block partition form:

XiX: XiXo| | B XY
XIX) XIXo| |Ona| | XLY
We can expand the terms in each block.
XIX1 B+ XiXo00,01 | | XIX05i| | XTY
X1X1 61 + XEX50,,1 XX, 5, Xty

By construction (X?X;)3 = (X!Y). Therefore the only condition we need to
verify is X.X13 = XLV
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O]

(c) Verify that the columns of X5 belong in Im(X;). Use this fact to show that
XX, 6, = XLY.

Solution. The columns in X3 belong in I'm(X) which is equal to Im(X;) by
assumption. Let xq denote the [ column of X, which is contained in I'm(X}).
Then for I € {1,..., ko} there exists a vector ¢; such that xo; = Xy¢;. We can stack
this result in matrix form as Xy = X;C. That means that XﬁXlﬁl = CtXleﬁAl.

On the other hand, substituting the definition of the estimator,
XX, 6, = C'XIX (XIX) XY,

Some terms cancel out and the expression simplifies to C*XTY = (X;O)Y =
X1Y. This completes the proof. O

(d) Consider the data matrix,

(1 1 0] 1]
110 2
X=110 1|, Y=|3
1 01 4
10 1) 5]

Construct X*X and X'Y. Now partition the matrix into X, X, and compute

B*. Verify that the results that you proved above are true for the following cases:

(i) Construct X; using columns 1 and 2.

Solution.
[1 1] 0]
11 0 5 2 3 15
X1: 1 0 X2: 1 y X:[Xl,XQ] XtX: 2 2 O 3 XtY: 3
1 0 1 3 0 3 12
|1 0] |1
5 2 15 4 15
XleL ] 'y = 3] p*=|-25| X'Xp*=|3
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(ii) Construct X; using columns 1 and 3.

Solution.
[1 0] 1]
10 1 5 3 2 15
Xi=1|1 1] Xy=10], X=[X1,Xo] X'X=13 3 0|, X'V=][12
11 0 2 0 2 3
1 1] 0

- " 1.5 15
X{Xlzl?) 3], X{Y:L] g =25 X'XB =3

]

Notice that we follow the convention to write a partition such that X =
[ X1, X5]. In this case we select columns 1 and 3, so the matrices X, X, are
different than before in (i).

(e) Is p* the same in both exercises? How can we interpret the result?

Proof. Typically 5* does not produce the same result. This is an example where
there are two mutually exclusive categorical variables and an intercept. For ex-
ample, column 1 of X presents a constant term, column 2 could represent a binary
indicator for whether the individual is female and column 3 could represent a bi-
nary indicator for male. The interpretation of the coefficient changes. If we drop
the last column, the “reference category” is male. If we drop the second column,
the “reference category” is female. However, both models have the same ability
to describe the data without loss of information, because their columns have the

same image. O

You can use the fact that the inverse of a 2 x 2 matrix is given by:

A:

21 A22 a11Q22 — A12021 | —ag; G131

11 Cl12] T 1 [(122 —Cl12]
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17.3 Orthogonality

1. In this exercise you will prove a version of the Frisch-Waugh-Lovell Theorem ( ,

) in the detrending example.
(a) Prove that 8y = (X! M, X )" (X{M,Y).

Solution. (3 = (Uff]l)_l(ﬁff]y) Where U; = MyX; and Uy = M,Y. Thus we

can rewrite the estimator as

B = (M X 1) My X1) (Mo X)) (MyY) Plugging-in Expressions U, and Uy
= (XI MM X)) (X My MyY) Distributing Transpose

= (XIMo X)) N (XIM,Y) Using idempotency and symmetry of M,

]

(b) Show that the system in Equation 3.1 can be written in block-partition form as:
XiX) X{Xo| (B
XiX: XEXo| o]

Solution. The transpose of X in block-partition form is [

Xty
Xty

Xt
1 . Therefore

2

t Xt XX, XX,
xtx = |1 [Xl Xz} -
X1 XiXy XEX,

Similarly we can show that

Xty
Xy

XY =

Xt
1y —
8

(¢) Show that second row can be rewritten as f, = (X4X5) L(XLY — XL X15,).

Solution. The formula for the second row is (X£X)B, + (XLX,)8 = X1Y. We
can solve this equation in terms of the second coefficient as fy = (X5 X5) 1 (X1Y —
X§Xaby). m
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(d)

~

Plug the above result into the first row of equations and show that (X{ M, X )5, =
(X'M,Y). Conclude that £ = f3;.

Solution. The equation in the first row is XX 5, + X! X3, = X'Y. Plugging-in
the result in part (c) we get that

XIX1 61 + XX (XEX,) ' XLY — XX (XEX,)TIXEX By = XY

X!X15 + XPY — XIPLX By = X1Y (Definition P2)
XU(I — P) X106, = X!(I — P,)Y (Grouping terms)
XMy X3, = XIMyY (Definition M,.)

O

2. In the detrending example:

(a)

Show that X full rank implies that X; and X are full rank. (Hint: Prove by

contradiction)

Solution. (By contradiction) suppose that X; or X, are not full rank. Suppose
WLOG that it is X5. Then by Corollary 2.2.1 we can write one of the columns as
a linear combination of the other columns in X,. However, this implies that one
of the columns of X can be written as a linear combination of other columns in

X, implying that X is not full rank. This is a contradiction. [

Define B = M>X ;. Show that replacing X; with the matrix B does not change
the image, i.e. Im(X1,X5) = Im(B, X5). (Hint: Modify Lemma 3.1.1)

Solution. First rewrite B = MyX; = X; — Xo(XiX5) ' XIX, and define © :=
(X1IX5) 1 XEX,, which is a ky x k; vector. Then B = X; — X,0.

(i) Im(B,X32) C Im(Xy,Xs2). Suppose that z € Im(B, X3). Then there exists a

vector 3 = gl , where 3; € R¥ and 3, € R* such that z = [B, X,|3. This

2
can be decomposed as B/3; + X502, which is equal to (X; —X20)5;+ X535 and

can be written in the form X, +Xo(—0p1+52). Therefore, z € Im(Xy, X5).
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(ii) Im(Xy,X2) C Im(B, X3). Suppose that z € Im(X;, X5). Then there exists

a vector 8 = gl , where 3, € R* and 3, € R*2 such that z = [ X}, X5].
2

This can be decomposed as X3, + Xs0,, which is equal to (B + X20)5; +
X302 and can be written in the form B, + X2(0©p6; + fs). Therefore, z €
Im(B, Xa).

]

(c) Show that if X is full rank then (X!M,X) is full rank. (Hint: Review Linear

Regression Section)

Proof. The matrix can be rewritten as X{MyX; = (XIMiM,X,) because M,
idempotent and symmetric implies that My = M:M,. Therefore the equation can
be written as (MyX;)"(M2X;). By Lemma 2.4.1, the gram matrix is full rank if
and only B = M, X, is full rank.

Now let us show that B = M,X; is indeed full rank. Suppose not. Then there

exists some nonzero vector ¢; # 0 such that
(I — Xo(XEX2) " XY X100 = 0.
Define ¢, = (X:X5) ' X! X c1, and hence the above equation could be rewritten as
Xicp — Xocy = 0.

Since (c1,c¢2) is a nonzero vector, this contradicts the condition that X is full
rank. ]
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17.4 Convex Sets (I): Hyperplanes

1. For any p € R"\{0} and a € R, let
h(p,a) = {z e R*p"z > a}

be the half space generated by the hyperplane H(p,a). Assume D is a closed subset
of R™. Let E be the intersection of all half spaces that contain D, i.e.

E= ﬂ h(p,a).

h(p,a)2D

Prove D is convex if and only if D = FE. This gives another characterization of

convexity. (Hint: separating hyperplane theorem.)

Solution. If D = F| then D is clearly convex because each half space in the intersec-

tion is convex.

Now assume D is convex. Because D is contained in each of the half space in the
intersection, D C E. Assume there is € FE but x ¢ D. Then because D is convex

and closed, there exists a hyperplane H(p*, a*) that strictly separates x and D:
*T * *t
pd>a*>pTtr VdeD.

The first inequality implies D C h(p*,a*), implying £ C h(p*,a*). But € E implies

p*Tx > a*, a contradiction. Hence E = D. O

2. Assume U C R" is convex. Let x* € U be a point. Prove the followings are equivalent:
(a) there is no x € U such that z; >z} forall i =1,--- | n,

(b) there exists A € R \{0} such that z* solves

max N z.
zeU

Solution. (a)==(b): Define W = {z € R"|z; > 2} Vi = 1,--- ,n}. The set W is
nonempty and convex, and W NU = () by assumption. Then by supporting hyperplane
theorem, there exists A € R™\{0} and real number ¢ such that

/\TyZCZ)\T:C, Vye W, xeU.
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Because z* is a limit point of W by construction, clearly ATaz* > ¢ > Az for all
x € U. It remains to show A > 0. Assume \; < 0 for some i. For any arbitrary
g € W, AT(§ +ne;) tends to —oo as n — oo, where ¢; is the ith unit vector in R™. But
7 + ne; € W for all n, contradicting A’y > ¢ for all y € W.

(b)=>(a): Suppose there exists A € R} {0} such that AT2* > X'z for all € U. Pick
any r € R" satisfying z; > x} for all i. Because \; > 0 and X # 0, we have ATz > AT x*.
Thus such x is not in U. 0

. Let D be a nonempty convex subset of R”. Prove its closure D is convex.

Solution. Pick any x,2’ € D. There must exist sequences {x,} C D and {2/} C D
such that x,, — z and 2/, — 2’ (if € D, then let z, = x). So Az, + (1 — Nz, € D
for all A € [0,1]. Because Az, + (1 — A\)z!, converges to Az + (1 — N2/, Az + (1 — \)a’
is a point in D. [

195



17.5

Convex Sets (II): Cones

1. There are several different characterizations of Farkas’ Lemma. For example

Lemma 17.5.1 (Farkas’ Lemma V2). Let A be an m x n matriz and b € R™. Then

one and only one is true:

(i)  There exists x € R" such that Az <'b.

(ii)  There exists y € R™ such that y > 01, Y'A =015y, y'b < 0.

In this exercise, you will prove the lemma.

(a)

Define C' = [A, —A, I,xm] € R™ x R*™™_ Show that condition (i) is equivalent
to b € Cone(C) (Hint: Use properties of block-partitioned matrices and define a

vector z € R2"™).

Solution. Before we proceed with the proof we will analyze an object in C'one(C').
The vector z € Cone(C) if there exists a vector A € RZ""™ such that z = CA. In

block-partition form this means that:

A1
2= A A I] [ha| = AN = At dg = ADs - h) + g
A3

( =) We show that condition (i) implies that b € Cone(C'). Suppose that there
exists an z € R" such that Az <b. Set A3 =b— Ax > 0. For each entry of z; set
Ai; = x; if ; > 0 and zero otherwise. Similarly, set \y; = —x; if 2; < 0 and zero
otherwise. Then x = A\; — Ay and A\, Ay € R}. Therefore, b € Cone(A).
(<= )1Ifb € Cone(C), there exists A2"*™ such that b = C\. Set z = A\; —\y € R™.
By definition b = Az + A3 > Ax since A3 > 0,,«1.

O]

Show that condition (ii) is equivalent to: There exists y € R™ such that y'C' >
01 (2n+m) and y'b < 0.

Proof. Before we show the equivalence, let us express the y*C in block form.

ytA > 01xn,
y'C =y [A —A I} >0 <= —y'A > 014p
yt > 01xm
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Combining the two inequalities gives us y'A = 0;y, and y* > 01y,,. We can
transpose y' to show that the two conditions are identical.
O

Use the original Farkas’ Lemma to prove (Version 2).

Solution. Apply Farkas’ Lemma with the matrix C'. Then either the statement
in question (a) occurs or the statement in question (b). The proof is completed

between these statements and those of the lemma that we want to prove. Il

2. Consider an alternative restriction on asset prices.

Definition 17.5.1 (Pricing Restrictions). Suppose that there does not exist an z € R™
such that (¢'z <0 and Rz > 0,,x1) or such that (¢'z < 0 and Rz > 0,,x1).

(a)

Write down an economic interpretation of this condition.

Solution. It says that a market is arbitrage free if an investor cannot purchase
a portfolio at (1) zero cost or lower and obtain a positive return in at least one
state, or (2) get paid for the assets (negative costs) and receive a non-negative

return. L]

Suppose that there exists a set of portfolio weights € R™ that yield positive
returns in every state (Ilz > 0). Show that Rzr > 1,,x1¢'z. Give a simple
example of a return matrix R, a price vector ¢ and a portfolio x where this holds
but the conditions in Definition 5.5.1 does not hold.

Proof. By definition, the expected profit from a portfolio is Ilz = Rx — 1,414¢'x.
Then IIz > 0 implies that Rz > 1,.1¢'z. Consequently, Rx > 1,.1¢'z. Let
n=m=1,and ¢ =1 and R = 2. Then x = 1 ensures that Ilx > 0. However,
¢’z > 1 and Rx > 0. O

Suppose that there exists a probability vector a € R™ with strictly positive

entries which satisfies a'lIl = 0;,,. Show that Definition 5.5.1 is satisfied.

Proof. If there exists a vector a € R with strictly positive probabilities such
that oIl = 014, then o' Rz = a'l,,x1¢'x. Suppose that (i) Rx > 0 and ¢'z < 0,
then since a > 0 then o' Rx > 0 and o'1¢'z < 0. On the other hand if (ii) Rz > 0
and ¢'x < 0 then o Rx > 0 and o'l¢’x < 0. This a contradiction because we

should have o Rx = o'1,,1¢'x. O

197



17.6 Quadratic Forms

1. Let A be an n X n square matrix. Assume:
et Az =0, Ve e R".
(a) Prove all diagonal components of A are 0 € R.
Solution. Let x = ¢; be the i-th unit vector in R™. Then a; = el Ae; = 0.

(b) Show by example that condition (6.1) does not imply A = 0.

Solution. For example

works.
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17.7 Determinants

A matrix B, ., is positive definite if Vo € R", 27 Bz > 0. An equivalent definition of positive

definiteness can be formulated using the determinant:

b11 bnl
B=1|.. .. ..
b1 - ban
Define the leading principal minor k of B, as the matrix formed by taking the upper left

(k x k) submatrix. In other words:

bll b12

Bl = [b :| 782 =
H bar by

By =

A matrix is positive definite if and only if Vi € {1,...,n},det(B;) > 0. (Take this as a

given, you do not need to prove it).

1. Define a function F' : M,,x,, — R". F(B) = (det(By), ....,det(B,)). Reformulate the

definition of positive definiteness in terms of F(B).

Solution. The condition is: A matrix is positive definite if and only if F(B) € R, .

Remark As a reminder, the set R, is the set in R" that has strictly positive com-

ponents for all dimensions.

]

2. Define a metric for the distance between two matrices, d(A, B). Show that it is a

metric: that it is non-negative, symmetric and satisfied the triangle inequality.

Solution. Let vec(A),vec(B) be the vectorized versions of the matrices (A, B). Then

let us define the distance between two matrices as:

d(A, B) = |vec(B) — vec(A)|gmn

d(A, B) = \/(CLH — b11)2 + ...(CLnl — bn1)2 + ...+ (amn — bmn)2

where | - |[gmn is the vector norm in R™". This metric satisfies the three properties of

a metric (because the vector metric is a proper metric):
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(a) It is non-negative and A = B iff d(A, B) = 0.
(b) It is symmetric. d(A, B) = d(B, A).

(c) It satisties the triangle inequality :

d(A,C) < d(A, B) +d(B,C)

3. Show that the function F(B) is continuous.

Solution. Let F;(B) be the i* coordinate of F(B). A vector valued function is con-
tinuous if and only if all of its components are continuous functions. Therefore we only

need to prove that F;(B) is continuous Vi € {1,...,n}.

F;(B) = det(h;(B)) = det(B;), where h;(B) is a functions that selects the submatrix
B;. We discussed in class that the determinant is a continuous function because it is
essentially a polynomial of the components of a matrix, and polynomial functions are
always continuous. Furthermore h;(B) is also a continuous function (it only selects

elements from B). Therefore the composite function F;(B) is also continuous.

Remark Continuity has to be defined within a metric space. We can choose the metric

we selected in part (b).
O

4. Show that the set of positive definite matrices of size (n) is an open set in M,, .

Remark This shows that under small perturbations in the components of a positive

definite matrix, the resulting matrix preserves the property of positive definiteness.

Solution. One definition of continuity that is very useful in the case is that a func-
tion is continuous if and only if the pre-image of an open set is also an open set in
the domain. In this cases a matrix is positive definite if F(B) € R, . The set R" | is

an open set. Therefore, the set of matrices that satisfy the condition is also an open set.

We can also derive the proof using € — § arguments. Suppose that a matrix is positive

definite, then F(B) € R, . There exists an € > 0 such that the all values in an open
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ball around F'(B) also belong to R . By the definition of continuity 39 > 0 such that
VB's.t.d(B,B') <0 = d(F(B),d(F(B’)) < e. This means that a neighborhood
around B is also positive definite. Thus the set of positive definite matrices is an open

set.

]
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17.8 Eigenvalues and Eigenvectors
1. (25 points) Let P be an n X n matrix.

(a) (5 points) Define a markov matriz P as an n X n matrix that has non-negative
entries where the entries of each column sum to one. Let m be a non-negative
vector whose entries sum to one. Show that 7 does not belong to the kernel.

Further show that Px is a vector whose entries sum to one.

Solution.
P11 P12 - DPin 1
.« .. n 7"'
p— D12 ]{22 Y4 = 2
Pn1 Pn2 - DPnn Tn
Then P7m can be written as:
P11 Pin
P21 Don . . .
Pr=m | |+ -4m| | = Z 7;p; = A linear combination of the columns
Pn1 Pnn

Therefore, the sum of the entries on P is:

DD b =) W) py=) m=1
J i J

i J
The second equality changes the order of the sum. The third equality uses the

fact that the elements of each column of P sum to 1. The fourth equality uses

the fact that the entries of 7; sum to one.

7w belongs to the kernel <= Pm = 0. However, since its entries of Pm sum to

one, P # 0. Therefore, 7 is not part of the kernel.

Using the fact that 7 is non-negative is not necessary to prove the above proper-

ties. However, it implies that Pm has non negative entries.
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pij ZO VZ,j € {1,,’)1}
= m;pij = 0 since m; > 0,Vj
— ijpz-j >0 which is the i entry of Pr

J

O

(b) (3 points) Now suppose that lim,, .., P™ — P*. Show that P* is also a markov
matrix and show that 7 does not belong to its kernel. (Hint: Show that every P”

is markov).

Solution. First we will show that P™ is markov. We will do this by induction.

For m = 2:
e 7
P*=PP=|Pp, --- Pp,
o

Notice that the columns of P are non-negative vectors that sum to one. Therefore,
Pp; is a non-negative vector whose entries sum to one in each column, by the proof

in the previous exercise. For n > 2:
pm = ppmi

Since P is markov, its columns are non-negative entries whose entries sum to
one in each column, it follows that P™ is also markov. Let p;;, denote the ¢,
entry of P™.
We can summarize the set of conditions that define a markov matrix for a matrix
pPm™:

Pijm > 0, Vi,j € {l,..,n}

J

Notice that if pij, — pj;, then it still satisfies the first weak inequality, and the
second equality.This means that the set of markov matrices is closed. Therefore,
in the limit it still satisfies the restrictions of a markov matrix. This completes

the proof of why P* is markov.
O
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(e)

(2 points) Show that if P is symmetric, then P* is symmetric.

Solution. Firs we will show that P™ is symmetric. We will prove this by induc-
tion. For m = 2:

(PP) = P'P'=P

For n > 2: (P™)t = (PP™ 1)t = (Pm~1)tpt = p(m=D P — pm This shows that

P™ is symmetric. Notice that a matrix is symmetric iff:
Dijm — Pjim = 0 V1,5 € {1,...,n}

If pijm — pj;, it will still satisfy this equality b
O

(5 points) Suppose that P* is such that for every m, P*r = 7*, for a fixed 7*.
Write down what the matrix P* has to be for 7* = (0.2,0.3,0.4,0.1) if P* is 4 x 4.

Solution. We will use the elementary basis to construct P* :

P*=|Pe --- Pe,| =|n* - 7
ol 1ol

This is a matrix with identical column vectors 7*. Since Pm is just a linear
combination of the columns, with weights adding to one, then the resulting vector

is just 7*, as desired. For the example 4 x 4 example suggested:

02 02 02 02
0.3 03 0.3 0.3
04 04 04 04
0.1 0.1 0.1 0.1

P =

]

(5 points) Under the previous property, for what set of vectors 7* will the implied
P* be symmetric. If it is symmetric, is it idempotent? If so, what is its rank?
(Note that if P is symmetric, it implies very special restrictions on what P should

converge to).

204



Solution. In the previous questions we established that under the previous prop-
erty, pj; = 77, Vi, j € {1,...,n} (all columns are identical to 7*).

On the other hand, symmetry implies that p;; = pj;. Suppose that we take the
first column: 7 = pf; = pi;, = 71, Vi{l,...,n}. Therefore all the entries of 7* are
identical and equal to 1/n because they have to add up to 1. For the 4 x 4 case

this means:

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

O
(2 points) Construct an example of a 2 X 2 symmetric matrix P that doesn’t

converge. (Hint use zeros and ones only). Compute its eigenvalues. Use the

spectral decomposition to give a reason why it doesn’t converge.

Solution. An example of a 2 x 2 matrix that doesn’t converge is:

o

The matrix P changes the order of the columns. It can be shown by induction
that:

/o -

m odd

m even

—_ = = O
o o O =

\ L .

To compute its eigenvalues we need to compute the roots of:

-2 1

det(P — AI) = det

]:)\2—1:0

Then the roots are: Ay = 1, Ay = —1. Now we need to compute the eigenvectors

205



for each eigenvalue, respectively:

1

(P —T)v = [_11 1] v =0 = v € span{ H}

1

|
-1
Therefore we can construct a spectral decomposition of P. Notice that first we

V2| o | 1/V2
12T —yve|

1 1

(P—l—])vgzl ]1)2:0———>v2€spcm{

have to obtain orthogonal vectors from each span: v; = [

T T M O |« o8 —
P = U1 V2 -
0 X |« o8 —
4
L 201 ol [ -~
Evevd B A W v A

We can verify that this decomposition recovers the original matrix P. We can

now use this decomposition to compute P™:

p*"=pPP.---P
— (CACY)(CACY) - - - (CACH)
= COAN"(C?
1 m
0 (—1)m

The second to third line follow from the fact that C*'C =

are orthonormal. This means A" oscillates between —1 and 1, depending on m,

I, since the vectors

and thus never converges. The example shows that symmetry does not guarantee

convergence.

General remarks for other types of exercises: Notice that if one of the
eigenvalues were strictly less than one in absolute value then \™ would converge
to zero. However, at least one of them has to be greater than or equal to zero,
otherwise A™ — 0 and P* is not a markov matrix (which contradicts what we

proved earlier). If |A] > 1 then the values would be explosive and diverge to
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infinity.

There are many more results for the eigenvalues of markov matrices that are not
symmetric, even those that don’t have a spectral decomposition. The key thing is
to prove which and how many many eigenvalues are strictly less than one, equal
to one and strictly greater than one. I encourage you to keep these concepts in

mind in future work involving markov chains.

]

(g) (3 points) Show that the following asymmetric P converges to a P* such that

P*m = 7n*. Compute P* and 7*.

P 05 0
05 1
: : 0.5)™ 0 o .
Solution. I will prove that P™ = (05" 1 by using induction. The result

holds trivially for m = 1, then for m > 1:

Pm — PPm—l

Jos of [ os)m 0
05 1] [1-(05)" 1
N (0.5)(m+D) 0
~(0.5)(0.5)™ + (1= (0.5)™) 1

] s g
1—(0.5)m*+) 1

0 0

Then P* = lim,,_,o, P™ = - and 7* = L This means that regardless of

the initial vector 7w, P™7 will converge to 7*. This highlights that both symmetric

and non-symmetric matrices can converge. [
2. This questions asks you to analyze the eigenvalues of stochastic matrices:

(a) (3 points) Let v € R". Show that the entries of the vector Pv add up to Y7, v;.
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Solution. Let 1, € R™ be a vector with only 1s in each entry. Then the sum of

the entries of Pv can be represented as 1% Pv. This is a quadratic form that can

be represented as a double sum.

n n
t _ E E
1nPU = Pijvj
i=1 j=1
n n
=Y vy Py
j=1 =1
n
=2
Jj=1

]

(b) (9 points) Let v* € R™, v # 0 be an eigenvector of P, with corresponding eigen-

value A. Prove the following statements:

i.

1i.

(1 point) P*v* = \v*, s € N.

Solution. We can prove this by induction. For s = 1, by definition of an
eigenvector. Plv* = Pv* = \v*.

Suppose it holds for s. Then P*tlv* = P(Psv*) = P(A\")v* = XN Pv* =
AEA* = \stp*,

O

(4 points) Show that if 37, vi # 0, then A = 1. [Hint: show that P° is also

markov].

Solution. P is a matrix whose columns (py, ..., p,) sum to one. Let P’ be
another markov matrix. Then PP’ is a matrix with columns (Ppj, ..., Pp.,).
By the result in part (a) the columns of PP’ must sum to one. Furthermore,
since P and P’ have non-negative entries, PP’ has to have non-negative en-
tries. Now we can show that P?® is markov by induction. For s = 2, if P = P’
then PP’ = P?, which is markov. Now suppose that it holds for s. Then
P’ = P*. Then P*t! = PP® = PP’ which is also markov.

Therefore, by the result in part (a) the entries of P*v* have to sum up to
>, v} for all s. From the result in part (b)(i) we know that P*v* = \*v*.

Therefore the entries sum up to A*3°7 | vi. This means that \* = 1,Vs =
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1ii.

A=1.

Additional result: It is also possible to show that there exists at least one
vector with eigenvalue 1. Since det(B) = det(B"),VB then det(P — \I) =
det(P' — XI). This means that the eigenvalues of P and P! are the same
(although the eigenvectors can be different). Since the rows of P! sum to
one, it can be shown that 1, is an eigenvector of P! with eigenvalue \ = 1.
Therefore, P has at least one eigenvector with A = 1, which is not necessarily
1,.

O

(4 points) Show that if > 7 vi = 0,v* # 0, then [\] < 1. [Hint: show that
for any fixed v # 0 (not necessarily an eigenvector), supp ||Pv|| < M < oo,

P markov].

Solution. Let w = Pv. Notice that ||Pv|| = />, w? = \/Z?zl(zg;l Pjv

This is a continuous function of the F;;. Suppose that we represent P as
vec(P) € R™. If P is markov, then each entry is bounded P;; € [0,1] and
>y Py = 1,Vj, which is a closed set. Then for fixed v the norm ||Puvl|
is a continuous function from a compact space in R (the set of markov
matrices) into R. By the maximum theorem, there exists a markov matrix
P* such that ||P*v|| = maxp ||Pv|| = supp ||Pv|| = M < oo. Consequently
||Pv|| < M, for all P markov.

Notice that P" is also markov, therefore ||P™v*|| < M. By part (b)(i), this
implies that |[A\"v*|| = |A["||v*|| < M,Vn. Since v* # 0, |[v*|]| > 0 and
A" < nyf—*H,Vn. If [A| > 1, there exists an n large enough that |A|" > %

This is a contradiction, therefore |A| < 1.
]
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17.9 Introduction to Differentiation

x®sin(1/x) x#0
1. Let f(x) = . For what values of a is f(z) differentiable at z = 07
0 x=0

Solution. The function is not well defined some some non-integer values of «. For
example, if @ = 0.5, x*~! = 1/y/x. Therefore, I will restrict this proof to integer values

of a.

f(z) — £(0) _ sin(1/x)

z—0 T

S(z) =

= 2% sin(1/x)

o If a =1, S(z) =sin(1/z), which oscillates around for x close to 0.

e If o < 1 then 7! is not defined for some values of . For example the sequence
z, = 1/(2mn) has the property that S(z,) = 0 and if z,, = 1/(27n + (7/2)),
then S(z,) = (2mn + (7/2))* ! — co. Therefore, it doesn’t satisfy the sequential

definition of convergence.

e If @ > 1 it does converge:
—z*t < tsin(l/z) < 27t

Since lim, ,o 2% ! = 0, then lim, ,0 S(x) = 0. Then the derivative exists for

integer values of « strictly greater than one but not for other integer values of «.

]

2. Let f,g: R — R be two functions. Let yg = g(xg) for some zo € R. Find examples for

the following cases when:

(a) g is differentiable at xy and f is not differentiable at yo;
(b) g is not differentiable at xy and f is differentiable at yo;

(¢) g is not differentiable at xq and f is not differentiable at o,

but f o g(x) is differentiable.

Solution. (a) Consider f(y) = |y|, g(z) = 2*. Consider zy = 0 and yo = 0. Then

fog(x) = 2% hence differentiable at .

(b) Consider f(y) = v?, g(z) = |z| and zy = 0.
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(c) Consider

f<x>:g<x>:{§ e

Then neither f nor g is continuous at 0. But f o g(x) = = which is differentiable.

]

3. (Exercise 11 on page 186, Pugh) Assume that f : (=1,1) — R and f’(0) exists. If
Qn, B — 0 as n — 00, define the different quotient

f(Bn) — f(an)‘

D, =
ﬁn_an

(a) Prove that lim, ., D,, = f/(0) under each of the following conditions (Hint: First

rewrite this expression in terms of 18 "3

=10 4nq £ (a”o);f © and use the sequential

definition of the limit.

i.

il.

iii.

a, <0< f,.
Solution. Rewrite

D, — f(Bn) — f(0) B +f(ozn)— f(0) —ay

ﬁn ﬁn — Qp (079 Bn — Qi

Bn Ay, Bn 571 — Oy, ‘
Because 0 < z=22- <1, as n — oo, the right hand side tends to 1/(0). O
0<a, < f, and Bnﬂ—an < M.
Solution. The proof is similar to previous one. Rewrite

_ f(Ba) = f(0)  Bn flan) = f(0) —ay
Dn B Bn Bn — Qp * Qanp Bn — Qp

(079 ﬁn Oy, ﬁn — Oy .

Because ﬁﬁ”&n is bounded, the limit exists and is equal to f’(0). ]

f'(z) exists and is continuous for all z € (—1,1).

Solution. For each n, the mean value theorem implies that there exists

0, € (0,1) such that

Dn - f/<an + gn(ﬁn - an))
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Taking limits on both sides, the continuity of f’ implies lim D,, = f/(0). O

(b) Set f(z) = 2*sin(1/x) for z # 0 and f(0) = 0. Observe that f is differentiable
everywhere in (—1,1) and f'(0) = 0. Find «, and §, that tend to 0 in such a

way that D,, converges to a limit unequal to f’(0).

Solution. Let 3, = % + # and a,, = % O
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17.10 Mean Value Theorems

1. In the auctions example.

(a) Assume in addition that o(v) is a function such that Vv € [0, 1], b*(v) = o(v) (there

is a symmetric equilibrium). Use Equation 10.5 to show that:

The right hand side is called the virtual value.

Solution. Substituting b(v) = o(v), then o=(b) = v. The equation simplifies to:

(v— U(U))F/(Ufl(a(v)))m

(v = (W) () s = F() = 0
Rearranging the equation,
o(v) =v— a’(v)?/((?;))

O

(b) Using the above equation and the signs of the derivatives, show that if Vo €
0,1],6*(v) = o(v) then Yv € [0,1],0(v) < v (this show that in a symmetric

equilibrium everyone bids weakly below their valuation).

Solution. Rearrange the above formula:

Since the second term is negative, then o(v) < v.
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2. Assume f function is continuous on [0,00) and differentiable on (0,00). Suppose

f(0) =0 and f’ is increasing on (0, 00). Prove

is increasing on (0, 00).

Solution. Consider x5 > x; > 0. Then by the mean value theorem, there exists
& € (0,z1) and & € (x1, 22) such that

f(x1) = f/(&)(x1r —0) + £(0) = f'(&)ms

and

f(z2) = [(&) (w2 — z1) + fz1) = [(&) (2 — 1) + [/(&)21 > f/(&1)o,
where the inequality comes from the fact that & > & and f’ is increasing. Therefore

f(x2) > f(m).

T2 T
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17.11 Taylor Expansion

1. Suppose f: R — R is twice differentiable. Assume f(0) > 0, f/(0 ) <0and f"(z) <0

for all z € R. Prove there exists £ € <0, %) such that f(§) =

Solution. By Taylor’s theorem, we have

f(x) = f(0)+ f(0)x + @ﬁ for some 1 between 0 andz.

e F0), ') S0
Cre) = ) <0
Because f(0) > 0, there exists £ € (O, —]{c,((%))) such that f(§) = 0. O

2. Assume f : [a,b] — R is twice differentiable and f'(a) = f’(b) = 0. Prove there exists
¢ € (a,b) such that

701> 5 zﬁ 1 (@)

Hint: expand f(%2) at a and b respectively
2

Solution. By Taylor’s theorem, we have

a+b

(= )=f<>+f<> ”@n( ) ﬁwmme&e(ma;by
and
FEEY) = 10) - 1) 5% 4 5@ (50 torsome & € (“500)
Then
Gl 0= = 37" @) )] < (e () < max (| (el | €]

]

3. Let f : [a,b] — R be twice differentiable. Assume sup,c,, [f"(z)] < M for some
constant M. Assume also f achieves its global maximum at some point z* in (a,b).
Prove

[f (@] +|F0)] <M - a).
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Solution. Because z* € (a,b), we know f'(z*) . Now apply the mean value

=0
theorem to f’: there exists § € (a,2*) and & € (2*,b) such that

f'la) = f'(@") + f(&)(a — %),

and
FB) = 1) + P(E)b ).
Hence
Fla)= &) —a") amd fo)=L D0
Thus,

[F (@) + 1F )] < [f"(€)I(z" — a) + |7 (&)I(b— 2%) < M(b— a).
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17.12 First-Order Differentiation in R"

1. (Euler’s Equations) Assume f : R? — R is differentiable. Fix (z,y) € R?. Define
g(t) = f(tx,ty) for all t > 0. Show g is differentiable and

0 0
gt) = xa—i(tx, ty) + ya—‘g(tx, ty).

Assume in addition, there exists o > 0 such that
fltw, ty) =t*f(xr,y) Vt>0 and V(z,y) € R (17.1)

Show for all (z,y) € R?,

af af

ro (@ y) + ya—y(x,y) = af(z,y). (17.2)

A function with the property (17.1) is said to be homogeneous of degree a. The

equation (17.2) is called Euler’s formula.

Proof. Fix (z,y) € R% Let h : R — R? be the linear mapping ¢ + t “ ). so

)
g(t) = f(h(t)). Since both f and h are differentiable, we know ¢ is differentiable. By
chain rule,
, 0 0 x
(1) = Dy(t) = DF(O)Dh(t) = (2 (1, 1y), (et | 7).
ox dy y

If in addition, (17.1) holds, then we know ¢'(t) = at® ! f(z,y) for all t. This implies

oG tety) +y 5 ) = e, v
Evaluating both sides at t = 1 yields the desired result. [

2. (Exercise 16 on page 347, Pugh) Let f : R?> — R? and g : R*> — R be defined by
f=(z,y,2) and g = w where

w = w(r,y,z)=xy+yz+zz

r = xz(s,t) =st y=uy(s,t)=scost z=2z(s,t)=ssint
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(a)

Find the matrices that represent the linear transformations (Df), and (Dg),
where p = (so,t9) = (0,1) and ¢ = f(p).

Proof. The representation matrix of (Df), is

t S 1 0
cost —ssint = cosl O
sint scost sinl O

(s,£)=(0,1)
The representation matrix of (Dg), is
(y+ 2.2+ 2,2+ Y)|@y=000 = (0,0,0).
O

Use the Chain rule to calculate the 1 x 2 matrix [Qw/ds, Ow/0t] that represents
(D(go f))p-

Proof. It is simply

1 0
(0,0,0) | cos1 0 | =1(0,0).
sinl 0

O

Plug the functions x = z(s,t), y = y(s,t) and z = z(s,t) directly into w =

w(z,y, z) and recalculate [Ow/0s, Ow/0t], verifying the answer given in (b).
Proof. Plugging x,y, z into w yields
w(s,t) = s*tcost + s> costsint + s*tsint.

Hence

ow Ow
(%a Eﬂ(s,t):(o,l)

= (2stcost + 2scostsint + 2stsint, s? cost — s*tsint — s*sin® ¢ 4 s* cos® t + s?sint + st co

= (0,0).
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17.13 Second-Order Differentiation in R"

1. We showed that a matrix representation exists for a linear map. Why does it have to

be unique?

2. Let f: R? — R? be defined by

f(i:)=<pi”+p§)-

Prove for any p € R?, the matrix that represents (D?f), is

(7o)
0  O6po
Proof. We will take it as given that we know (D f), is represented by
( 3pi 3 ) :
Therefore
IR@)@I| = || (D)) = (D) = T(w,0)|
Z;] — [329% 3295] [Zj — [01 vz} < 651 622

u
= [3@% 3@%} [ 1] = 3viuy + 3viuy
Uz

B H [3(131 +v1)* 3(p2 + vz)ﬂ

Notice that residual is linear in the second argument by construction. In this case it

is possible to directly compute the operator norm ||R(v)(-)|],

1ROl = sup  [[R)(w)l|= sup {3vius+ 3vjus}

ueR™,[[uf|=1 ueR™,[|uf|=1

where u? +u3 = 1. To compute the sup, it is without loss to consider uy,us > 0. Note
that then us = /1 —u? < 1 — uy, where the equality holds when u; = 0 or u; = 1.

Thus we have
3viuy 4 3viuy < 3vPuy + 3v5(1 — uy) < max{3v?, 3v3}
The equality could be achieved bt taking uy = 1,uy = 0 if v? > U%, and uqp = 0,uy =1
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if v? < v3. Therefore, we have shown that ||R(v,-)|| = max{3v?, 3v3} and hence

[R(0)()I] _ max{3v{, 3v3}

ol ]|

= max{3(v1/|[vl]), 3(v3/[lv[)}-

|v;] < ||v]| is bounded by construction. Therefore,

lim v?/||v]| =0
v—02x1

lim v3/[[v|| =0
v—02x%1

Therefore, R(v)(+) is sublinear and therefore we have show that our candidate matrix

is second derivative.

O

. Let f:R"™ — R be defined as
f(z) = 2T AT Az

where A is an n x n matrix. Calculate the matrices that represent (Df),.

Proof. Let g : R™ — R be such that g(y) = y"y = D", y?. By calculating the first

order partials, it is easy to see

2(y17 U 7ym) = 2yT

represents (Dg),. Let h : R* — R™ be such that h(z) = Az. Then A represents (Dh),.
Since f(z) = g(h(x)), by chain rule (Df), = (Dg)n) © (Dh),, and

oh(z)T A = 22T AT A

is the representation matrix.

]

. Assume that X is an n x k full rank matrix and that ¥ € R™. Show that B =
(X!X)1X'Y is the solution to the least squares criterion function by computing the

first order conditions of
(Y = XB)(Y - XP)
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17.14 Comparative Statics

1. Consider the Auctions Example in previous chapters. Show that b*(v) is increasing in

v. [Hint: Use the implicit function theorem)].

Solution. Because this b*(v) is an interior maximum, g—;Uv(b*) < 0. Furthermore,

1

since o is strictly increasing then o~ is also strictly increasing (by using the inverse

mapping theorem we can further show that o’ > 0).

For applying the implicit function theorem, let H(b,v) = 38({)” = 0. Then

_OH P

= % = @Uv(b*) < O Then B_l < 0

aH 82 *\ _ o —1 -1
= = U) = P (07 (8) 50 () > 0

Using the implicit function theorem:

ob*(v)

=-B'4>0
v ~

Therefore b*(v) is an increasing function of v.

2. Consider the following Keynesian IS-LM model. Suppose

Y = C(Y =T)+I(r)+G
M = L(Y.r)

where Y is GDP, T is taxes, r is interest rate, GG is government spending and M is
money supply. The functions C(-), I(-) and L(-,-) are consumption function, invest-
ment function and money supply function respectively. Assume they are continuously
differentiable and

oL oL
0<C'(z)<1, I'(r)<0, —>0 d — <0.
Suppose G, M and T are independent variables which can be controlled, Y and r are
dependent variables determined by G, M and T. Analyze the relationships between

{Y,r} and {G, M, T}.
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Solution. Define

FT,G,MY,r) = Y-CY -T)-I(r) -G
WT,G,M,Y,r) = L(Y,r)— M.

<% %>_<1—0W—ﬂ-wm)
oh on | T oL oL '
oY oY oY or

This matrix is invertible because its determinant A = (1—C'(Y — T))g—f —i—[’(r)% < 0.

Therefore

-1
F % B . (1-Cc-T1) —I'(r) C'Y-T) -1 0
o or o | T oL oL 0 0 -1

Then

or oG oM )4 or
_ _1( oL I'(r) )(C’(Y—T) ~1 0 )
A\ -2L 1-C'(Y-T) 0 0 -1
_i( noy-1) % ()
A\ -2Loy —-T) 2 -1+C'(Y-T)
Therefore ‘?) <0,2 8G >0, 2 aM >0, 2 75 < 0, 2 56 >0 and 17 < 0. O
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